
Differential Equations, Fall 2016
Computer Project 2, Due Monday, October 3

The goal of this assignment is to implement the Euler Method and the Improved Euler
Method, and to use these methods to numerically solve some differential equations. You
should hand in the following things:

1. A printout of the program EulerMethod.m from problem 1.

2. A printout of the plots from problem 2.

3. A printout of the program ImprovedEulerMethod.m, and the plots from problem 3.

4. A printout of commands and output from problem 4.

5. A printout of the plot from problem 5.

Here is a warm-up exercise to teach you about functions with multiple return values.
Do not hand it in. Create a function called test2.m in your directory (I recommend
creating a separate directory for each computer project). Enter the following code into
the function:

function [a b]=test2()

a=[5 6];

b=10;

end

The function takes in 0 inputs and returns 2 outputs, a and b. You can run it from the
command line by typing in

> test2()

You can save its outputs to some variables by typing in

> [x y]=test2();

This will store the value of the first output into x and the value of the second ouput into
y. If you type in

> z=test2();

only the first output will be stored into the variable z. You can create functions with an
arbitrary number of outputs. For example, if the function began as

function [a b c]=test2()

then it would have 3 outputs.



1. (3 points) The goal of this problem is to write a program to implement the Euler
Method to solve an initial value problem of the form

dy

dx
= f(x, y)

y(x0) = y0.

We will take f(x, y) = y to begin with. First, we need to create a Matlab function
for f(x, y). To do this, create a function called f.m and enter the following code.

function val=f(x,y)

val=y;

end

Test that it works by entering the command

> f(2,3)

(This should return 3.)

Now we will create the main program to implement the Euler Method. Create a
function called EulerMethod.m. Start with the following code in this function:

function [xvals yvals]=EulerMethod(xmin,xmax,steps,y0)

% calculate the step size

h=(xmax-xmin)/steps;

% now set up a list of x values

% need the list to have steps+1 numbers in it

% because the initial x is counted as 1

xvals=linspace(xmin,xmax,steps+1);

x=xmin;

% initialize y and yvals

y=y0;

yvals=[y];

% now a for loop to build the yvals

for i=1:steps

% x and y already have values stored in them

% use these values to find slope

slope=f(x,y);

% now find the next y value

y=...

% and add it to the list of yvals

yvals=[yvals y];

% update x

x=xvals(i+1);

end

end



The function takes in 4 inputs. The first input is the initial x value, the second
input is the final x value, the third input is the number of steps to use, and the
fourth input is the initial y value.

The function returns 2 outputs. The first output is a list of the x values, and
the second output is a list of the corresponding y values. These values are the
approximate numerical solution of the differential equation.

Lines that start with % are comment lines. They have no effect on the code and I
put them in there to tell you a little bit about what the code is doing. The only
thing you need to do to complete the program is to remove the ... and put in the
correct formula for y in the for loop.

Print out the program EulerMethod.m.

2. (3 points) In this problem we will run the function EulerMethod you created in the
previous problem and plot the output. Note that the differential equation we are
considering for now is y′ = y, the solutions of which are y = Cex. To consider a
different equation we would need to change the function f.m.

We will take the initial condition y(0) = 1, and use the program to find an approx-
imate solution for 0 ≤ x ≤ 2. Run the command

> [x y]=EulerMethod(0,2,5,1);

This will give a crude approximation using 5 steps. It should look roughly like the
exponential function. We can graph it by running the command

> plot(x,y)

Now run the command

> [x y]=EulerMethod(0,2,1000,1);

and graph it using the commands

> hold on

> plot(x,y)

The hold on command tells Matlab to draw all new plots into the current figure.
The hold on command will remain active until you close the figure or turn it off
with the command hold off. (At least this is the way Matlab seemed to work on
my computer. Octave works a little differently.) Drawing both plots in the same
figure will allow you to see the difference between the two solutions. Matlab will
generally use a new color when making a new plot in the same figure. You can can
control the color by passing it into the plot function; for example, plot(x,y,’r’)
will plot in red. You can enter the command help plot to see a list of available
colors. Print out the figure containing both solutions (the printout does not need
to be in color).



3. (3 points) Now create a file called ImprovedEulerMethod.m to implement the Im-
proved Euler Method. You can start by reusing the outline of the previous code.
Here it is to get you started:

function [xvals yvals]=ImprovedEulerMethod(xmin,xmax,steps,y0)

% calculate the step size

h=(xmax-xmin)/steps;

% now set up a list of x values

% need the list to have steps+1 numbers in it

% because the initial x is counted as 1

xvals=linspace(xmin,xmax,steps+1);

x=xmin;

% initialize y and yvals

y=y0;

yvals=[y];

% now a for loop to build the yvals

for i=1:steps

% x and y already have values stored in them

% use these values to find slope

slope1=f(x,y);

...

y=...;

yvals=[yvals y];

x=xvals(i+1);

end

end

Now we will test that it works by plotting the output as in the previous problem.
First, if the figure from the previous exercise is still open, close it. Then run the
commands

> hold on

> [x y]=ImprovedEulerMethod(0,2,5,1);

> plot(x y)

> [x y]=ImprovedEulerMethod(0,2,1000,1);

> plot(x y)

This should draw both plots in the same figure. Print out the figure containing both
plots. Also, print out the program ImprovedEulerMethod.m.

You should notice that the solutions are much closer to each other than the ones in
the previous exercise were. This suggests that they are closer to the actual exact
solution. If you want to, you can plot the solutions from the previous exercise in
the same figure to see the difference between the two methods. You do not need to
turn it in.



4. (3 points) Now we will test how accurate the programs are by using them to calculate
the number e. You can get Matlab to display the exact value of e to several decimal
places by entering the commands

> format long

> exp(1)

Now run the following commands to get several approximations using your program

> [x y]=EulerMethod(0,1,10,1); y(11)

> [x y]=EulerMethod(0,1,1000,1); y(1001)

> [x y]=EulerMethod(0,1,100000,1); y(100001)

> [x y]=ImprovedEulerMethod(0,1,10,1); y(11)

> [x y]=ImprovedEulerMethod(0,1,1000,1); y(1001)

> [x y]=ImprovedEulerMethod(0,1,100000,1); y(100001)

Print out your commands along with the output.

5. (3 points) Now we will consider the equation

dy

dx
= y(1 − y) + .1 sin(x).

Use the Improved Euler Method with 10000 steps to solve this equation on the
interval 0 ≤ x ≤ 15 For the initial condition, first take y(0) = .25, and then
y(0) = .5, and then y(0) = .75, and so on up to y(0) = 2. So you will have solved
the equation 8 times with 8 different initial conditions. Plot all the solutions in the
same figure and print it out.

Here is something else to think about (you do not need to hand in an answer): What
happens when you take an initial condition of y(0) = −1? Can you explain why?


