\qquad
You must show all your work to receive credit. Calculators are allowed.

Problem 1: (3 points) Find the exact value of

$$
\begin{gathered}
\lim _{t \rightarrow 2} \sqrt{\frac{t^{2}-t-2}{t-2}} \\
\sqrt{\frac{t^{2}-t-2}{t-2}}=\sqrt{\frac{(t-2)(t+1)}{t-2}}=\sqrt{t+1}, \text { so } \\
\lim _{t \rightarrow 2} \sqrt{\frac{t^{2}-t-2}{t-2}}=\lim _{t \rightarrow 2} \sqrt{t+1}=\sqrt{3} .
\end{gathered}
$$

Problem 2: (3 points) Explain what is wrong with the following reasoning:

$$
\lim _{x \rightarrow 0}[x \sin (1 / x)]=\left[\lim _{x \rightarrow 0} x\right] \cdot\left[\lim _{x \rightarrow 0} \sin (1 / x)\right]=0 \cdot\left[\lim _{x \rightarrow 0} \sin (1 / x)\right]=0
$$

The first step is incorrect because the limit product law cannot be used due to the fact that $\lim _{x \rightarrow 0} \sin (1 / x)$ does not exist.

Problem 3: (4 points) Using the ϵ, δ definition of a limit, prove that

$$
\lim _{x \rightarrow 3}(2 x+1)=7
$$

Make sure you separate your scratch work from your formal proof. Use the back of the quiz if you need more room.

Let $\epsilon>0$ be given. Choose $\delta=\epsilon / 2$. Then $|f(x)-L|=|2 x+1-7|=|2 x-6|=2|x-3|<$ $2 \delta=\epsilon$ whenever $0<|x-3|<\delta$.

