Calculus and Analytic Geometry 1, Math 1823-001, Fall 2014
Practice Exam 1

1. Find the following limits exactly. Write DNE if they do not exist. Allow $\infty,-\infty$ as possible answers.
a) $\lim _{t \rightarrow 0}\left(\frac{1}{t}-\frac{1}{t^{2}+t}\right)$
b) $\lim _{h \rightarrow 3} \frac{h^{2}+2}{h+3}$
c) $\lim _{x \rightarrow-3}\left(\frac{x^{2}-9}{x+3}\right)^{1 / 3}$
d) $\lim _{y \rightarrow-1}(\cos (y+1) \sin (\pi y / 2))$
e) $\lim _{x \rightarrow 0} \sin ^{2}(1 / x)$
f) $\lim _{x \rightarrow 1} \frac{1 / x-1}{x-1}$
g) $\lim _{x \rightarrow \sqrt{2}}\left(2 x^{2}-3 x+5\right)$
h) $\lim _{x \rightarrow 1^{-}} \frac{2(x-1)}{|x-1|}$
i) $\lim _{t \rightarrow 0^{+}} \frac{1}{\sin t}$
2. a) Explain with a picture why

$$
\lim _{x \rightarrow 0}[x \sin (1 / x)]=0
$$

b) Let

$$
f(x)= \begin{cases}x \sin (1 / x) & x \neq 0 \\ 0 & x=0\end{cases}
$$

Explain why $f^{\prime}(0)$ does not exist.
c) Let

$$
g(x)= \begin{cases}x^{2} \sin (1 / x) & x \neq 0 \\ 0 & x=0\end{cases}
$$

Show that $g^{\prime}(0)=0$.
3. Let $f:[-1,1] \rightarrow \mathbb{R}$ be the function $f(x)=\sqrt{1-x^{2}}$. The graph of f is the upper half of a circle of radius 1 . Draw the graph and use it to explain why

$$
\lim _{a \rightarrow-1^{+}} f^{\prime}(a)=\infty, \quad \lim _{a \rightarrow 1^{-}} f^{\prime}(a)=-\infty
$$

4. Explain the geometric significance of each of the following limits:

$$
\lim _{h \rightarrow 0} \frac{\sqrt{a+h}-\sqrt{a}}{h}, \quad \lim _{x \rightarrow a} \frac{x^{2}-a^{2}}{x-a} .
$$

5. Draw a picture of a function that is continuous everywhere except at $x=-2$ and $x=2$, and, furthermore, is continuous from the left at -2 and not continuous from the right or left at 2 .
6. Let

$$
f(x)= \begin{cases}2 x^{2}+a x & x \leq 1 \\ -3 x+2 & x>1\end{cases}
$$

Find the number a so that f is continuous everywhere.
7. Let $P_{1}(x)$ and $P_{2}(x)$ be polynomials. Let $Q(x)=P_{1}(x) / P_{2}(x)$. At which points is $Q(x)$ discontinuous?
8. In the ϵ, δ definition of a limit, the inequalities

$$
|f(x)-L|<\epsilon, \quad 0<|x-a|<\delta
$$

appear. What are the geometric meanings of these inequalities?
9. a) Let $f(x)=-x^{2}+1$. For a an arbitrary number, find $f^{\prime}(a)$.
b) Find the equation of the line tangent to the graph of f at $x=3$.
10. Let $h(t)=\cos t$. Draw the graph of h, and use the graph to find $h^{\prime}(0)$.
11. Suppose $f(x)$ and $g(x)$ are continuous functions on all of \mathbb{R}, and

$$
f(2)=4, \quad g(2)=3, \quad g(1)=2 .
$$

Find the following limits:
a) $\lim _{x \rightarrow 2}[2 f(x)-g(x)]$
b) $\lim _{x \rightarrow 1}(f \circ g)(x)$
c) $\lim _{x \rightarrow 2} \sqrt{f(x)}$
d) $\lim _{x \rightarrow 2} \sin \left(\frac{f(x)}{g(x)}\right)$

