## Math 1823-001 Fall 2014 Exam 1

| TA T      | , |
|-----------|---|
| Name:     |   |
| 1 Value . |   |

| Problem            | Points |
|--------------------|--------|
| Problem 1 (20 pts) |        |
| Problem 2 (10 pts) |        |
| Problem 3 (15 pts) |        |
| Problem 4 (10 pts) |        |
| Problem 5 (10 pts) |        |
| Problem 6 (10 pts) |        |
| Problem 7 (15 pts) |        |
| Problem 8 (10 pts) |        |
| Total              |        |

1. (20 points) Find the following limits exactly. Write DNE if they do not exist. Allow  $\infty$ ,  $-\infty$  as possible answers.

a) 
$$\lim_{x \to -1} \sin(x^3 + 2x^2 - 3x + 4) = \sin(-1 + 2 + 3 + 4)$$
  
=  $\sin(x^3 + 2x^2 - 3x + 4) = \sin(x^3 + 2x^2 - 3x + 4)$ 

b) 
$$\lim_{h\to 0} \frac{\frac{1}{h+1}-1}{h} = \lim_{h\to 0} \left[ \frac{1}{h(h+1)} - \frac{1}{h} \right] = \lim_{h\to 0} \left[ \frac{1}{h(h+1)} - \frac{h+1}{h(h+1)} \right]$$
$$= \lim_{h\to 0} \frac{-K}{K(h+1)} = \frac{-1}{1} = -1$$

c) 
$$\lim_{x\to 2} \sqrt{\frac{x^2-4}{x-2}} = \lim_{x\to 2} \sqrt{\frac{(x-2)(x+2)}{x-2}} = \lim_{x\to 2} \sqrt{x+2} = \sqrt{2+2} = 2$$

f) 
$$\lim_{x \to -1} \frac{x+2}{x+1} = D N E$$

e) 
$$\lim_{x\to 5^+} f(x)$$
, where  $f(x) = \begin{cases} (x-5)^2, & x \le 5\\ 1/(x-5), & x > 5 \end{cases}$ 

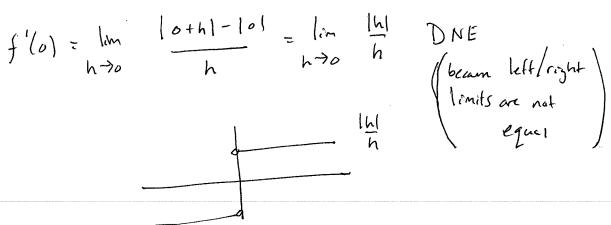
$$\lim_{\lambda \to S^+} f(x) = \lim_{\lambda \to S^+} \frac{1}{x-S} = \infty$$

a) (5 points) Let f(x) be a function and a be a number. Write down the 2. definition of f'(a) as a limit. Geometrically, what is the significance of f'(a)?

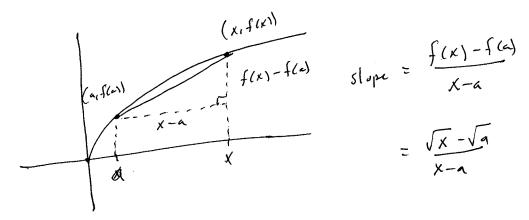
$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

b) (5 points) Let f(x) = |x|. Using the limit definition of a derivative, show that f'(0) does not exist.

$$f'(o) = \lim_{h \to o} \frac{|o+h|-|o|}{h} = \lim_{h \to o} \frac{|h|}{h}$$



- 3. Let  $f(x) = \sqrt{x}$ .
  - a) (5 points) Write down a formula for the slope of the secant line between the points (a, f(a)) and (x, f(x)) on the graph of f. Draw a picture to illustrate your answer.



b) (5 points) Find the slope of the line tangent to the graph of f at a by taking the limit as  $x \to a$  of your answer from part a).

$$\lim_{X \to a} \frac{f(x) - f(a)}{x - a} = \lim_{X \to a} \frac{\sqrt{x} - \sqrt{a}}{x - a} = \lim_{X \to a} \frac{\sqrt{x} - \sqrt{a}}{\sqrt{x} + \sqrt{a}}$$

$$= \lim_{X \to a} \frac{1}{\sqrt{x} + \sqrt{a}} = \lim_{X \to a} \frac{\sqrt{x} - \sqrt{a}}{\sqrt{x} + \sqrt{a}} = \lim_{X \to a} \frac{\sqrt{x} - \sqrt{a}}{\sqrt{x} + \sqrt{a}} = \lim_{X \to a} \frac{\sqrt{x} - \sqrt{a}}{\sqrt{x} + \sqrt{a}} = \lim_{X \to a} \frac{\sqrt{x} - \sqrt{a}}{\sqrt{x} + \sqrt{a}} = \lim_{X \to a} \frac{\sqrt{x} - \sqrt{a}}{\sqrt{x} + \sqrt{a}} = \lim_{X \to a} \frac{\sqrt{x} - \sqrt{a}}{\sqrt{x} + \sqrt{a}} = \lim_{X \to a} \frac{\sqrt{x} - \sqrt{a}}{\sqrt{x} + \sqrt{a}} = \lim_{X \to a} \frac{\sqrt{x} - \sqrt{a}}{\sqrt{x} + \sqrt{a}} = \lim_{X \to a} \frac{\sqrt{x} - \sqrt{a}}{\sqrt{x} + \sqrt{a}} = \lim_{X \to a} \frac{\sqrt{x} - \sqrt{a}}{\sqrt{x} + \sqrt{a}} = \lim_{X \to a} \frac{\sqrt{x} - \sqrt{a}}{\sqrt{x} + \sqrt{a}} = \lim_{X \to a} \frac{\sqrt{x} - \sqrt{a}}{\sqrt{x} + \sqrt{a}} = \lim_{X \to a} \frac{\sqrt{x} - \sqrt{a}}{\sqrt{x} + \sqrt{a}} = \lim_{X \to a} \frac{\sqrt{x} - \sqrt{a}}{\sqrt{x} + \sqrt{a}} = \lim_{X \to a} \frac{\sqrt{x} - \sqrt{a}}{\sqrt{x} + \sqrt{a}} = \lim_{X \to a} \frac{\sqrt{x} - \sqrt{a}}{\sqrt{x} + \sqrt{a}} = \lim_{X \to a} \frac{\sqrt{x} - \sqrt{a}}{\sqrt{x} + \sqrt{a}} = \lim_{X \to a} \frac{\sqrt{x} - \sqrt{a}}{\sqrt{x} + \sqrt{a}} = \lim_{X \to a} \frac{\sqrt{x} - \sqrt{a}}{\sqrt{x} + \sqrt{a}} = \lim_{X \to a} \frac{\sqrt{x} - \sqrt{a}}{\sqrt{x} + \sqrt{a}} = \lim_{X \to a} \frac{\sqrt{x} - \sqrt{a}}{\sqrt{x} + \sqrt{a}} = \lim_{X \to a} \frac{\sqrt{x} - \sqrt{a}}{\sqrt{x} + \sqrt{a}} = \lim_{X \to a} \frac{\sqrt{x} - \sqrt{a}}{\sqrt{x} + \sqrt{a}} = \lim_{X \to a} \frac{\sqrt{x} - \sqrt{a}}{\sqrt{x} + \sqrt{a}} = \lim_{X \to a} \frac{\sqrt{x} - \sqrt{a}}{\sqrt{x} + \sqrt{a}} = \lim_{X \to a} \frac{\sqrt{x} - \sqrt{a}}{\sqrt{x} + \sqrt{a}} = \lim_{X \to a} \frac{\sqrt{x} - \sqrt{a}}{\sqrt{x} + \sqrt{a}} = \lim_{X \to a} \frac{\sqrt{x} - \sqrt{a}}{\sqrt{x} + \sqrt{a}} = \lim_{X \to a} \frac{\sqrt{x} - \sqrt{a}}{\sqrt{x} + \sqrt{a}} = \lim_{X \to a} \frac{\sqrt{x} - \sqrt{a}}{\sqrt{x} + \sqrt{a}} = \lim_{X \to a} \frac{\sqrt{x} - \sqrt{a}}{\sqrt{x} + \sqrt{a}} = \lim_{X \to a} \frac{\sqrt{x} - \sqrt{a}}{\sqrt{x} + \sqrt{a}} = \lim_{X \to a} \frac{\sqrt{x} - \sqrt{a}}{\sqrt{x} + \sqrt{a}} = \lim_{X \to a} \frac{\sqrt{x} - \sqrt{a}}{\sqrt{x} + \sqrt{a}} = \lim_{X \to a} \frac{\sqrt{x} - \sqrt{a}}{\sqrt{x} + \sqrt{a}} = \lim_{X \to a} \frac{\sqrt{x} - \sqrt{a}}{\sqrt{x} + \sqrt{a}} = \lim_{X \to a} \frac{\sqrt{x} - \sqrt{a}}{\sqrt{x} + \sqrt{a}} = \lim_{X \to a} \frac{\sqrt{x} - \sqrt{a}}{\sqrt{x} + \sqrt{a}} = \lim_{X \to a} \frac{\sqrt{x} - \sqrt{a}}{\sqrt{x} + \sqrt{a}} = \lim_{X \to a} \frac{\sqrt{x} - \sqrt{a}}{\sqrt{x} + \sqrt{a}} = \lim_{X \to a} \frac{\sqrt{x} - \sqrt{a}}{\sqrt{x} + \sqrt{a}} = \lim_{X \to a} \frac{\sqrt{x} - \sqrt{a}}{\sqrt{x} + \sqrt{a}} = \lim_{X \to a} \frac{\sqrt{x} - \sqrt{a}}{\sqrt{x} + \sqrt{a}} = \lim_{X \to a} \frac{\sqrt{x} - \sqrt{a}}{\sqrt{x} + \sqrt{a}} = \lim_{X \to a} \frac{\sqrt{x} - \sqrt{a}}{\sqrt{x} + \sqrt{a}} = \lim_{X \to a} \frac{\sqrt{x} - \sqrt{a}}{\sqrt{x} + \sqrt{a}} = \lim_{X \to a} \frac{\sqrt{x} - \sqrt{a}}{\sqrt{x} + \sqrt{a}} = \lim_{X \to a} \frac{\sqrt{x} - \sqrt{a}}$$

c) (5 points) Find the equation of the line tangent to the graph of f at a=4.

Slope = 
$$\frac{1}{2\sqrt{4}} = \frac{1}{4}$$
, point =  $(4, f(4)) = (4, 2)$   
 $y - 2 = \frac{1}{4}(x - 4) \implies y = \frac{1}{4}x + 1$ 

4. (10 points) Suppose  $\lim_{x\to a} f(x)$  exists and  $\lim_{x\to a} g(x)$  exists. Is it always true that

$$\lim_{x \to a} \frac{f(x)}{g(x)}$$

exists? Why or why not?

No, for example if 
$$g(x) = 0$$
 for all  $x$  the lamit does not exist.

5. (10 points) Suppose g(t) and h(t) are continuous functions, and

$$\lim_{t\to a} g(t) = L_1, \qquad \lim_{t\to a} h(t) = L_2.$$

Find  $\lim_{t\to a} [g(t) + 2h(t)]^2$ .

$$\lim_{t\to a} \left[ g(t) + 2h(t) \right]^2 = \int_{t\to \infty}^{lim} g(t) + 2\lim_{t\to a} h(t) \right]^2$$

$$= \int_{t\to \infty}^{lim} \left[ g(t) + 2\lim_{t\to a} h(t) \right]^2$$

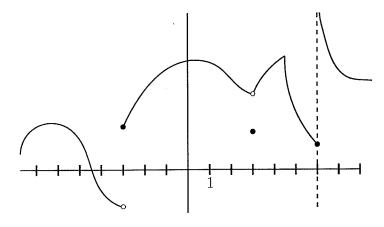
- 6. The  $\epsilon, \delta$  definition of a limit is the following:  $\lim_{x\to a} f(x) = L$  if, for every  $\epsilon > 0$ , there is some  $\delta > 0$  so that  $|f(x) L| < \epsilon$  whenever  $0 < |x a| < \delta$ .
  - a) (5 points) Why does the definition say  $0 < |x a| < \delta$  instead of just  $|x a| < \delta$ ?

Because we want X to not be equal to a.

b) (5 points) For an infinite limit, the definition is slightly different. It is:  $\lim_{x\to a} f(x) = \infty$  if, for every M>0, there is some  $\delta>0$  so that f(x)>M whenever  $0<|x-a|<\delta$ . The other definition does not make sense for an infinite limit because it does not make sense to say  $|f(x)-\infty|<\epsilon$ . Explain (in words) why  $|f(x)-\infty|<\epsilon$  does not make sense.

If(N-00) is not defined; geometrically, If(XI-00) would be the distance between f(X) and so, which would always be so no matter what f(XI is.

7. (15 points) Here is the graph of a function f.



Use the graph to answer the following questions.

a) At which numbers is the function discontinuous?

b) For each number from the previous part, state whether or not  $\lim_{x\to a} f(x)$  exists (a stands for the number).

$$lim f(x)$$
 DNE  $x o -3$ 

$$\lim_{x\to 3} f(x)$$
 exists

8. (10 points) Let  $f(x) = x^3 + x^2 + x + 1$ . Use the intermediate value theorem (IVT) to show that there is a number c between 0 and 2 such that f(c) = 10.