Math 1823-001
Fall 2014
Exam 1
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1. (20 points) Find the following limits exactly. Write DNE if they do not exist.
Allow o0, —0g-as possible answers.
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2. a) (5 points) Let f(z) be a function and a be a number. Write down the
definition of f'(a) as a limit. Geometrically, what is the significance of

f'(a)?
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b) (5 points) Let f(z) = |z|. Using the limit definition of a derivative, show
that f'(0) does not exist.
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3. Let f(z) = /x.

a) (5 points) Write down a formula for the slope of the secant line between
the points (a, f(a)) and (z, f(z)) on the graph of f. Draw a picture to
illustrate your answer.

b) (5 points) Find the slope of the line tangent to the graph of f at a by
taking the limit as z — a of your answer from part a).
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¢) (5 points) Find the equation of the line tangent to the graph of f at
a = 4.
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4. (10 points) Suppose lim,.,, f(z) exists and lim,_,, g(z) exists. Is it always
true that
f(z)
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exists? Why or why not?
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5. (10 points) Suppose g(t) and h(t) are continuous functions, and

lim g(t) = L, lim A(t) = Ls.
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Find lim;_o[g(t) + 2h(t)]>.
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6. The €, 6 definition of a limit is the following:

limg_q f(z) = L if, for every € > 0, there is some § > 0 so that [f(z) — L] <«
whenever 0 < |z —a| < 0.

a) (b points) Why does the definition say 0 < |z — a] < § instead of just
|z —a| < 67
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b) (5 points) For an infinite limit, the definition is slightly different. It is:
lim,_,q f(z) = oo if, for every M > 0, there is some 6 > 0 so that
f(z) > M whenever 0 < |z — a| <.
The other definition does not make sense for an infinite limit because it
does not make sense to say |f(z) — co| < €. Explain (in words) why
|f(z) — oo| < e does not make sense.
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7. (15 points) Here is the graph of a function f.
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Use the graph to answer the following questions.

a) At which numbers is the function discontinuous?
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b) For each number from the previous part, state whether or not

lim,_,, f(z) exists (a stands for the number).
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8. (10 points) Let f(z) = z® + z? + + 1. Use the intermediate value theorem
(IVT) to show that there is a number ¢ between 0 and 2 such that f(c) = 10.

floy = | < Lo <15 =32), and

1( ;S (ur\Sﬁ/\MO%S .

Tht Sooe the  TVT - Seys o i a

Nomber ¢ belwten O ad 2 S -“mlr

$(ey < 1o




