1. (a) Suppose X is a full subcomplex of \mathbb{R}^{3} with its standard integer cubing. Show that X is NPC if and only if no 3 -cube in \mathbb{R}^{3} has exactly seven of its vertices in X.
(b)* Let $D=\{(n, n, n) \mid n \in \mathbb{Z}\}$ and let X be the combinatorial k-neighborhood of D (for some integer $k \geq 1$). That is, X is the full subcomplex of \mathbb{R}^{3} whose vertex set is all $(x, y, z) \in \mathbb{Z}^{3}$ at most k edges away from D. Show that X is NPC (in fact, CAT(0)).
(c)** Show that the analogous subcomplex of \mathbb{R}^{4} is not NPC.
2. Let X be a CAT(0) cube complex. Prove that if g is an automorphism of X and H is a half-space of X such that $g H \subset H$ and $\partial H \cap \partial g H=\emptyset$, then g does not fix any vertex of X.
3. (a) Suppose X and Y are flag simplicial complexes and Z is a full subcomplex of both. Show that $X \cup_{Z} Y$ is a flag simplicial complex.
(b) Let A, B, C be NPC cube complexes, and suppose

$$
\phi_{A}: C \rightarrow A, \quad \phi_{B}: C \rightarrow B
$$

are combinatorial isometric embeddings of C into A and B. Let

$$
X=A \sqcup B / \phi_{A}(c)=\phi_{B}(c) \quad \forall c \in C
$$

(i.e. glue A and B along their embedded copies of C). Show that X is an NPC cube complex.
4. Prove that, given three points a, b, c in a metric space, there exists a comparison tripod with valence one vertices $a^{\prime}, b^{\prime}, c^{\prime}$ such that $d(a, b)=d\left(a^{\prime}, b^{\prime}\right), d(b, c)=d\left(b^{\prime}, c^{\prime}\right)$ and $d(c, a)=d\left(c^{\prime}, a^{\prime}\right)$.
5. (a) Let Y be the three-point set $\{a, b, c\}$ and let W be the set of all partitions of Y into two subsets. Then (Y, W) is a space with walls. Find the CAT (0) cube complex associated with (Y, W).
(b) Same as (a), but with the four-point set $\{a, b, c, d\}$. Which vertices are principal ultrafilters? Note that there is a maximal cube, all of whose vertices are non-principal.

Remark: there is a notion of median algebra which is a set with a ternary operation $m(x, y, z)$ satisfying some axioms. Any median space is a median algebra. If you do the construction above with an n point set, you get the "free median algebra" on n generators. The case $n=5$ is already quite large and complicated.

