Homework 1, Topics in Topology, Fall 2017

- **1.** Prove the equivalence of the following statements about a group G:
 - (a) G is residually finite
 - (b) for any finite set $F \subset G$, there is a finite quotient $\phi: G \to Q$ such that $\phi|_F$ is injective
 - (c) $\bigcap_{H \leq G} H = \{1\}$
 - (d) the profinite topology on G is Hausdorff
- 2. Prove the equivalence of the following statements about a group G and a subgroup H < G: (a) H is separable in G
 - (b) $\bigcap_{H < K \leq G} K = H$
 - (c) H is closed in the profinite topology
- **3.** Suppose $G_0 \leq G$ and H < G. Let $H_0 = H \cap G_0$. Prove that the following are equivalent:
 - (a) H_0 is separable in G_0
 - (b) H_0 is separable in G
 - (c) H is separable in G

4. Show that every graph with finitely generated fundamental group has a compact core. [Def: a *compact core* of a space X is a compact subspace $C \subset X$ such that the inclusion map $C \hookrightarrow X$ is a homotopy equivalence. In the case of a graph, this is just a finite subgraph whose inclusion induces an isomorphism on fundamental groups.]

5. Show that every closed surface Σ with $\chi(\Sigma) < 0$ is a finite-sheeted cover of Σ_{-1} , the nonorientable closed surface with Euler charcteristic -1. [You may want to rely on the classification of surfaces.]

6. Prove that the group \mathbb{Z}^n is LERF. (Do it for n = 2 if you prefer.)