
Final Exam Solutions
Topology II (Math 5863)

1(a) Give the definition of a homotopy equivalence.

(b) If f : X → Y is a homotopy equivalence, prove that f∗ : π1(X,x0) → π1(Y, f(x0)) is an
isomorphism. List carefully any theorems or properties that you use.

(c) Give an example of two spaces that are homotopy equivalent but not homeomorphic. (Explain
clearly why they are not homeomorphic.)

Solution.
(a) It is a continuous map f : X → Y such that there exists another continuous map g : Y → X

with f ◦ g ' idY and g ◦ f ' idX .
(b) Let f and g be as above. Then f∗ ◦ g∗ = (f ◦ g)∗ = (idY )∗ = id and similarly g∗ ◦ f∗ = id.

Therefore f∗ and g∗ are inverse isomorphisms of groups. Properties used:

• if F ' G then F∗ = G∗

• (idZ)∗ is the identity homomorphism of π1(Z, z0)

• (F ◦G)∗ = F∗ ◦G∗

(c) One example would be a point and any contractible space, such as R. They are homotopy
equivalent because R deformation retracts onto a point, and deformation retractions are homotopy
equivalences. They are not homeomorphic because there is not even a bijection between them (they
do not have the same number of points).

2(a) Recall that the Möbius band X is the quotient space of the square [0, 1]× [0, 1] obtained by
identifying (0, t) with (1, 1 − t) for all t ∈ [0, 1]. What is the fundamental group of the Möbius
band? Explain.

(b) The boundary of the Möbius band is a single loop. Which element of the fundamental group
does it represent?

(c) If you glue two copies of the Möbius band together along their boundary curves, you get
a surface. Use van Kampen’s theorem to find a presentation for the fundamental group of this
surface.

Solution.
(a) The Möbius band deformation retracts onto its core circle, which is the subspace [0, 1]×{12}

with endpoints identified. Thus its fundamental group is infinite cyclic, generated by the homotopy
class of the loop [0, 1]× {12}. Call this class a, so the group is 〈a〉.

(b) The boundary curve is the loop made up of the two paths [0, 1]×{0} and [0, 1]×{1} (joined
end to end). Under the deformation retraction to [0, 1] × {12}, it wraps twice around [0, 1] × {12},
and so it represents a2 ∈ 〈a〉.



(c) Join two copies of the Möbius band as described to form the space Z. Let A and B be open
neighborhoods of the two Möbius bands which deformation retract onto the Möbius bands. The
intersection of A and B is a neighborhood of the common boundary curve C which deformation
retracts onto C.

The fundamental groups of A, B, and C are each infinite cyclic. Pick a basepoint x0 ∈ C and
write π1(A, x0) = 〈a〉, π1(B, x0) = 〈b〉 and π1(C, x0) = 〈c〉. Let (iA)∗ : π1(C, x0) → π1(A, x0) and
(iB)∗ : π1(C, x0) → π1(B, x0) be the homomorphisms induced by the inclusion maps C → A and
C → B. By part (b) we know that (iA)∗(c) = a2 and (iB)∗(c) = b2.

Van Kampen’s theorem says that π1(Z, x0) ∼=
π1(A, x0) ∗ π1(B, x0)

N
where N is normally gen-

erated by the element (iA)∗(c)(iB)∗(c)
−1. Thus π1(Z, x0) has presentation 〈 a, b | a2b−2 = 1 〉, or

equivalently, 〈 a, b | a2 = b2 〉.
Incidentally, Z is the Klein bottle and this is another presentation of its fundamental group.

3. Give an outline of the argument showing that there is an isomorphism from the fundamental
group of the circle to Z. You do not need to prove the various lemmas that you use, but state them
clearly.

Solution. Let p : R → S1 be the usual covering map and s0 ∈ S1 the usual basepoint
(with p−1(s0) equal to the integers in R). The isomorphism is given by the lifting correspondence
Φ: π1(S

1, s0) → p−1(s0), defined as follows. Given [f ] ∈ π1(S1, s0) there is a unique lift f̃ to R
starting at 0. Then, Φ([f ]) is defined to be the endpoint f̃(1). This is well defined because, if
[f ] = [g], then any path homotopy from f to g lifts to a path homotopy from f̃ to g̃; in particular,
f̃ and g̃ have the same endpoints and f̃(1) = g̃(1).

Φ is a homomorphism: given [f ] and [g] suppose Φ([f ]) = m and Φ([g]) = n. Let f̃ and g̃ be the
lifts of f and g to R starting at 0. Then f̃(1) = m and g̃(1) = n. Let τm : R→ R be the translation
x 7→ x+m. Then, τm ◦ g̃ is the lift of g starting at m, and so f̃ · (τm ◦ g̃) is the lift of f · g starting
at 0. Hence, Φ([f ][g]) is the endpoint of this lift, which is (τm ◦ g̃)(1) = g̃(1) +m = n+m.

Φ is surjective: for any n ∈ Z, let f̃ be a path in R from 0 to n, and let f = p ◦ f̃ . Then, by
construction, Φ([f ]) = n.

Φ is injective: if Φ([f ]) = 0 then f̃ is a loop in R. Let f̃t be a path homotopy (in R) from this
loop to the constant path at 0. Then, p ◦ f̃t is a path homotopy from f to the constant path at s0.
Thus, [f ] = 0 in π1(S

1, s0).

4. Recall that RP 2 is a surface that has a 2–sheeted covering map S2 → RP 2.

(a) What is the fundamental group of RP 2?

(b) Describe the universal cover of RP 2 ∨ RP 2.

(c) What is the fundamental group of RP 2 ∨ RP 2? Can you describe (or list) all of its elements
explicitly?

Solution.
(a) The fundamental group is Z/2Z. (Since S2 is simply connected, the fundemantal group

must be a group of order 2.)



(b) The universal cover is made of infinitely many copies of S2 joined end-to-end, like a string
of beads. The points where two adjacent spheres touch map to the basepoint of RP 2 ∨ RP 2 and
each sphere maps to one of the copies of RP 2 by the covering map S2 → RP 2. The spheres map
to the copies of RP 2 ∨ RP 2 in an alternating fashion.

(c) By van Kampen’s theorem, the fundamental group is Z/2Z∗Z/2Z, or 〈 a, b | a2 = 1, b2 = 1 〉.
Its elements are represented by reduced words in the letters a and b. Since a = a−1 and b = b−1,
the letter a can only be followed by the letter b and vice versa. Thus the reduced words are exactly
the alternating sequences of a’s and b’s.

5(a) A path connected, locally path connected, semi-locally simply connected space X has funda-
mental group Z/13Z. How many (equivalence classes of) path connected covering spaces does X
have? Why?

(b) Same question, but now X has fundamental group Z/6Z. Also, how many of its covering spaces
are regular?

Solution.
(a) The equivalence classes of path connected covering spaces correspond bijectively with the

conjugacy classes of subgroups of Z/13Z. Since this is an abelian group, two subgroups are conjugate
if and only if they are equal. Thus, the equivalence classes of covering spaces correspond to the
subgroups. The only subgroups of this group are the group itself and the trivial subgroup (because
13 is prime). Hence, the only path connected covering spaces of X are itself and its universal cover.

(b) All the same comments apply to this case, except that now there are more than two
subgroups of Z/6Z. Writing the group as 〈a | a6 = 1〉, the subgroups are {1}, {1, a3}, {1, a2, a4},
and {1, a, a2, a3, a4, a5}. So there are four covering spaces. They are all regular because these
subgroups are all normal subgroups. (Every subgroup of an abelian group is normal.)

6. Describe carefully how to build a space whose fundamental group is given by the presentation
〈a, b | ababab = 1, a5 = 1〉.

Solution. We will build a cell complex X with the given fundamental group. Start with one
0-cell and add two 1-cells, labeled a and b. This space so far is the one skeleton X(1) and it is
homeomorphic to the figure eight. Next, we will attach two 2-cells via attaching maps φ1, φ2 : S1 →
X(1).

There maps can be considered as loops in X(1) and we simply have φ1 be the loop which
traverses the path labeled ababab. The map φ2 will be the loop which traverses the path labeled
aaaaa.

A corollary of Van Kampen’s theorem says that the fundamental group of X will be given by
the presentation 〈a, b, | ababab = 1, a5 = 1〉.



7. Consider the covering space p : X → S1 ∨ S1 ∨ S1 shown in the picture below.
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b b

b

c

c c

v

Find a free generating set for the subgroup H = p∗(π1(X, v)) of 〈a, b, c〉 (the fundamental group of
π1(S

1 ∨ S1 ∨ S1, x0)). Also, say as much as you can about the properties of H.

Solution. First we find a collection of loops in X corresponding to a free basis for the
fundamental group π1(X, v). Choose a maximal subtree T ⊂ X, for instance the union of the
two edges labeled by a that are incident to v. There will be a free generator for each edge not in
T . Thus, there are 7 free generators for this group. As based loops in X, they are given by the
following edge-paths: b, a−1ba, aba−1, a3, ca, a−1ca−1, ac.

The subgroup H is generated by the elements of 〈a, b, c〉 which are the images of the homotopy
classes of the loops described above. The labeling scheme is set up so that the loop labeled by ac
maps to a loop representing the word ac, and so on. Thus, H = 〈b, a−1ba, aba−1, a3, ca, a−1ca−1, ac〉.

We can also say that H is a subgroup of 〈a, b, c〉 of index 3, because X is a 3–sheeted covering
space of S1 ∨S1 ∨S1. Furthermore, there are covering transformations of X consisting of rotations
by 2π/3 in the picture above. These self-homeomorphisms preserve the labeling, and so they
commute with the projection map to S1 ∨ S1 ∨ S1. These transformations can take v to any other
vertex, so this is a regular covering. Therefore, H is a normal subgroup.

8(a) State the lifting criterion for a map f : (X,x0) → (B, b0), where p : (E, e0) → (B, b0) is a
covering map and all spaces are path connected and locally path connected.

(b) If X is path connected, what is the uniqueness property for lifts of maps f : X → B?

(c) Define the notion of an equivalence between covering spaces p : E → B and p′ : E′ → B.

(d) Define the notion of a covering transformation for a covering space p : E → B.

(e) If E,B are path connected, show that if h, k are covering transformations that agree at a point
e ∈ E, then h = k.

Solution.
(a) The lifting criterion states that a lift f̃ : (X,x0)→ (E, e0) exists if and only if f∗(π1(X,x0)) ⊂

p∗(π1(E, e0). Note that f̃ being a lift means that f = p ◦ f̃ (and f̃(x0) = e0).
(b) The uniqueness property is that two lifts are equal if and only if they agree at one point.
(c) An equivalence is a homeomorphism h : E → E′ such that p′ ◦ h = p.
(d) A covering transformation is an equivalence from a covering space to itself.



(e) Think of e ∈ E as a basepoint and let b = p(e) and e′ = h(e). We are given covering
transformations h, k which both take e to e′. Note that a covering transformation taking e to e′ is
exactly a lift of the continuous map p : (E, e) → (B, b) to the covering space p : (E, e′) → (B, b).
By part (b), h = k.


