1. (a) If \(r: X \to A \) is a retraction, what can you say about the map \(i_*: \pi_1(A, a_0) \to \pi_1(X, a_0) \), where \(i: A \hookrightarrow X \) is inclusion and \(a_0 \in A \)? Give a proof of your statement.

(b) Show that the fundamental group of the “figure eight” is infinite, by using a retraction to a subspace. [The figure eight is the union of two circles that touch in one point.]

2. (a) State the Tietze extension theorem.

(b) Let \(Z \) be a space which is a union of two closed sets \(X \cup Y \), where \(X \) and \(Y \) are normal. Show that \(Z \) is normal.

3. Let \(X_0 \) be a path component of \(X \) and let \(x_0 \in X_0 \) be a basepoint. Show that the inclusion map \(X_0 \hookrightarrow X \) induces an isomorphism of fundamental groups \(\pi_1(X_0, x_0) \to \pi_1(X, x_0) \).

4. (a) State the Borsuk-Ulam theorem for \(S^2 \).

(b) Suppose that the sphere \(S^2 \) is expressed as a union of three closed sets: \(S^2 = A_1 \cup A_2 \cup A_3 \). Show that one of the sets \(A_i \) contains an antipodal pair \(\{x, -x\} \). [Hint: use the functions \(f_i(x) = \text{dist}(x, A_i) \) for \(i = 1, 2 \).]

5. Let \(p: E \to B \) be a covering map.

(a) Show that if \(B \) is Hausdorff then so is \(E \).

(b) Suppose \(p(e_0) = b_0 \). Show that the induced homomorphism \(p_*: \pi_1(E, e_0) \to \pi_1(B, b_0) \) is injective. State clearly any theorems that you use.

6. (a) Show that if \(Y \) is Hausdorff then the space of continuous maps \(C(X, Y) \) with the compact-open topology is Hausdorff.

(b) Consider the sequence of functions \(f_n \in C(\mathbb{R}, \mathbb{R}) \) given by \(f_n(x) = x/n \). Does this sequence converge in the compact-open topology? Explain why or why not.