1. Use induction to prove that $n! < n^n$ for every integer $n \geq 2$:
 What is the basis step?
 What is the inductive hypothesis?
 What do you need to prove in the inductive step?
 Complete these steps, and the proof.

 Let $P(n)$ be " $n! < n^n$".

 Basis step: $P(2)$, or " $2! < 2^2$"

 This is true: $2 < 4$.

 Inductive hypothesis: $P(k-1)$, or " $(k-1)! < (k-1)^{k-1}$"

 Need to prove: $P(k-1) \rightarrow P(k)$.
 We have: $(k-1)! < (k-1)^{k-1}$, want to prove $k! < k^k$.

 Write $k! = k \cdot (k-1)!$.

 Then $k \cdot (k-1)! < k \cdot (k-1)^{k-1}$ by ind. hyp.

 $< k \cdot k^{k-1}$ since $k-1 < k$

 $= k^k$.

 So $k! < k^k$, i.e. $P(k)$ is true.

 Since we have proved $P(2)$ and $P(k-1) \rightarrow P(k)$ for $k \geq 2$, by induction, we have proved $P(n)$ for all $n \geq 2$.
2(a) Use the Euclidean Algorithm to find \(\gcd(9888, 6060) \).

\[
9888 = 1 \cdot 6060 + 3828 \\
6060 = 1 \cdot 3828 + 2232 \\
3828 = 1 \cdot 2232 + 1596 \\
2232 = 1 \cdot 1596 + 636 \\
1596 = 2 \cdot 636 + 324 \\
636 = 1 \cdot 324 + 312 \\
324 = 1 \cdot 312 + 12 \\
312 = 26 \cdot 12 + 0
\]

So \(\gcd(9888, 6060) = \gcd(312, 12) = 12 \).

2(b) Find the greatest common divisor and least common multiple of the numbers \(3^75^37^3 \) and \(2^{11}3^{5}5^3 \).

\[
\gcd(3^75^37^3, 2^{11}3^{5}5^3) = (\text{min of each exponent})
\]

\[
\text{lcm} = 2^{11}3^75^37^3
\]

2(c) Explain why \(ab = \gcd(a, b) \cdot \text{lcm}(a, b) \) for all positive integers \(a, b \).

If \(a = p_1^{m_1} \cdots p_k^{m_k} \), \(b = p_1^{n_1} \cdots p_k^{n_k} \) with each \(p_i \) prime and each \(m_i, n_i \geq 0 \), then

\[
\gcd(a, b) = p_1^{\min(m_1, n_1)} \cdots p_k^{\min(m_k, n_k)} \quad \text{and} \quad \text{lcm}(a, b) = p_1^{\max(m_1, n_1)} \cdots p_k^{\max(m_k, n_k)}
\]

and \(ab = p_1^{m_1+n_1} \cdots p_k^{m_k+n_k} \). The equation holds because \(\max(m_i, n_i) + \min(m_i, n_i) = m_i + n_i \) for each \(i \).
3(a) Give the definition for an infinite set \(S \) to be countable.

Then, suppose that \(S \) is countable and \(F \) is a finite set with \(n \) elements, disjoint from \(S \). Prove that \(F \cup S \) is countable.

Let \(F = \{a_0, a_1, \ldots, a_n\} \).

To show \(F \cup S \) is countable, we define a function

\[
F \cup S \xrightarrow{g} \mathbb{N}
\]

by:

\[
g(x) = \begin{cases}
 i & \text{if } x = a_i \in F \\
 f(x) + n & \text{if } x \in S
\end{cases}
\]

(shift \(\mathcal{E} \)s of \(S \) forward by \(n \), map \(F \) to the freed-up numbers \(0, \ldots, n-1 \)).

\(g \) is onto: every \(i \in \mathbb{N} \) is either \(g(a_i) \) (if \(i \leq n \)) or \(g(f^{-1}(i-n)) \).

\(g \) is \(1 \)-1: \(g \) is clearly injective on \(F \), and is \(1 \)-1 on \(S \) since if \(g(x) = g(y) \), then \(f(x) + n = f(y) + n \), so \(f(x) = f(y) \), hence \(x = y \) (since \(F \) is \(1 \)-1). Finally, if \(a \in F \) and \(x \in S \), then \(g(a) \neq g(x) \), since \(g(a) \notin \mathbb{N} \) and \(g(x) \notin \mathbb{N} \).

3(b) What is the coefficient of \(x^9 \) in \((2-x)^{19}\)?

By the binomial theorem,

\[
(2-x)^{19} = \sum_{k=0}^{19} \binom{19}{k} (2)^{19-k} (-x)^k
\]

The \(x^9 \) term occurs when \(k=10 \), so this term is

\[
\binom{19}{10} 2^{10} (-x)^9 = \binom{19}{10} 2^{10} (-1)^9 x^9
\]

\[= \frac{-19! 2^{10}}{9! 10!} x^9 \]

This is the coefficient \(\frac{5}{10} \).
4. How many strings of six lowercase letters from the English alphabet contain the letter a? the letters a and b? the letters a and b in consecutive positions with a preceding b, with all the letters distinct?

(i) total number of strings = 26^6
strings with no "a" : 25^6
number of strings containing "a" : $26^6 - 25^6$

(ii) By inclusion-exclusion, the union of these sets has cardinality $25^6 + 25^6 - 24^6$.

so the number of strings containing "a" and "b" is $26^6 - (25^6 + 25^6 - 24^6)$.

(iii) there are 5 configurations:

ab_4, \overline{ab}_3, \overline{ab}_2, \overline{ab}_1, ab_0.

In each configuration, you need 6 letters from a 4-permutation of $\{c, d, ..., z\}$. So there are $24 \cdot 23 \cdot 22 \cdot 21$ possibilities for each.

In all, $5 \cdot 24 \cdot 23 \cdot 22 \cdot 21$ strings.