1. (8 points) Find the following partial derivatives.

(a) f_x and f_y where $f(x, y) = x^y$

\[
\begin{align*}
 f_x &= yx^{y-1} \\
 f_y &= x^y \ln(x)
\end{align*}
\]

(b) u_{yx} where $u = xy^2e^y$

\[
\begin{align*}
 u_y &= xy^2e^y + 2xye^y \\
 u_{yx} &= y^2e^y + 2ye^y
\end{align*}
\]

(c) f_{yxyxyy} where $f(x, y) = x \tan(y^3)$

\[
\begin{align*}
 f_{yxyxyy} &= f_{xxx} \gamma \gamma \gamma \gamma \gamma \gamma \gamma \\
 f_x &= \tan(3y) \\
 f_{xx} &= 0 \\
 \text{so } f_{yxyxyy} &= 0.
\end{align*}
\]

(d) $\frac{\partial z}{\partial x}$ where $z = f(xy)$

\[
\frac{\partial z}{\partial x} = f'(xy)y \by \text{the one-variable chain rule.}
\]
2a. (6 points) Sketch the domain of the function \(f(x, y) = \ln(y) + 4\sqrt{x-y} - |xy| \). Be sure to indicate which boundary points are in the domain by using dotted/solid lines, and open/closed dots at special points.

\[x-y \geq 0 \quad \text{and} \quad y > 0 \]

2b. (2 points) Find the range of \(g(x, y) = |x \sin(y)| \).

\[
\text{range} = \left[0, \infty \right)
\]

3. (9 points) A contour map for a function \(f(x, y) \) is shown below.

(a) Estimate \(f(-3, 3) \) and \(f(3, -2) \).

\[
\begin{align*}
 f(-3, 3) &\approx 56 \\
 f(3, -2) &\approx 35
\end{align*}
\]

(b) Estimate \(f_x(0, -3) \) and \(f_y(0, -3) \).

\[
\begin{align*}
 f_x(0, -3) &= 0 \\
 f_y(0, -3) &\approx 30
\end{align*}
\]

(c) Is \(f_{xx}(0, -3) \) positive, negative, or zero?

\[
\text{negative}
\]

\[
(y = -3 \text{ slice is concave down })
\]
4a. (6 points) Consider the function \(f(x, y) = \frac{x^4}{x^2 + y^2} \). Write down a continuous function which agrees with \(f(x, y) \) away from \((0, 0)\). Then find \(\lim_{(x,y) \to (0,0)} \frac{x^4}{x^2 + y^2} \) and explain why the limit exists.

Away from \((0,0)\), \(f(x,y) = \frac{x^2}{1 + y^2} \), which is cont.

Hence \(\lim_{(x,y) \to (0,0)} f(x,y) = \lim_{(x,y) \to (0,0)} \frac{x^2}{1 + y^2} \).

Since \(1 + y^2 \) is continuous, we can plug in \((0,0)\) to get the limit.

Hence the limit is \(\frac{0}{1 + 0^2} = 0 \).

4b. (6 points) Show that the limit \(\lim_{(x,y) \to (0,0)} \frac{2xy^2}{x^2 + y^4} \) does not exist. [Hint: try approaching along a parabola.]

Approaching along the x-axis we have

\[
\lim_{(x,0) \to (0,0)} \frac{2x(0)^2}{x^2 + (0)^4} = \lim_{x \to 0} \frac{0}{x^2} = 0.
\]

Approaching along the parabola \(x = y^2 \) we have

\[
\lim_{(y^2,y) \to (0,0)} \frac{2y^2y^2}{(y^2)^2 + y^4} = \lim_{(y^2,y) \to (0,0)} \frac{1}{1} = 1.
\]

Two different limits \(\Rightarrow \lim_{(x,y) \to (0,0)} \frac{2xy^2}{x^2 + y^4} \) does not exist.
5. (8 points) Let \(V = \pi r^2 h \). Find \(dV \). Use this to estimate the amount of tin in a closed tin can with diameter 8 cm and height 10 cm if the tin is 0.03 cm thick.

\[
dV = \frac{\partial V}{\partial r} \, dr + \frac{\partial V}{\partial h} \, dh
\]

\[
dV = 2\pi r h \, dr + \pi r^2 \, dh
\]

Thickness = 0.03 cm \(\Rightarrow \)

\[
\begin{align*}
 dr &= 0.03 \text{ cm} \\
 dh &= 0.06 \text{ cm}
\end{align*}
\]

Amount of tin \(\approx dV = 2\pi (4)(10)(0.03) + \pi (4)^2 (0.06) \)

\[
= 3.36\pi \text{ cm}^3
\]
6a. (6 points) Explain why the function \(f(x, y) = e^x \sin(xy) \) is differentiable at \((0, 2)\). Then find either the linearization \(L(x, y) \) at this point or the equation of the tangent plane (your choice).

First,
\[
\begin{align*}
 f_x &= e^y \cos(xy) + e^x \sin(xy) \\
 f_y &= e^x x \cos(xy)
\end{align*}
\]

These functions are both continuous everywhere, so \(f(x, y) \) is differentiable.

\[
L(x, y) = f_x(0, 2)(x - 0) + f_y(0, 2)(y - 2) + f(0, 2)
\]

\[
L(x, y) = 2x
\]

(tangent plane : \(z = 2x \))

6b. (3 points) Estimate \(f(0.01, 1.97) \). [A calculator should not be necessary.]

\[
f(0.01, 1.97) \approx L(0.01, 1.97) = 0.02
\]