1(a) (5 points) Find the absolute maximum and absolute minimum values of \(f(x) = x^4 - 2x^2 + 3 \) on the interval \([-2, 3]\).

\[f'(x) = 4x^3 - 4x = 0, \quad 4x(x^2 - 1) = 0, \quad x = 0, \pm 1. \]

Critical points:

Check endpoints also:

\[f(-2) = 11, \quad f(-1) = 2, \quad f(0) = 3, \quad f(1) = 2, \quad f(3) = 66. \]

Absolute max. is 66
Absolute min. is 2.

(b) (5 points) Sketch the graph of a function \(f \) that is continuous on \([1, 5]\) and has two local minima, one local maximum, no absolute maximum, and six critical numbers.

Diagram:

1. Local min
2. Vertical tangent
3. Local max
4. Corner (\(f' \) does not exist)
5. \(f' = 0 \)
6. Local min
2(a) (5 points) The figure shows the graphs of four functions. Out of the four, identify three of them that could represent the position, velocity, and acceleration of a car (and say which is which).

(b) (5 points) Find the equation of the tangent line to the ellipse $x^2 + xy + y^2 = 3$ at the point $(1,1)$. [Hint: use implicit differentiation.]

\[
2x + \left(x \frac{dy}{dx} + y \right) + 2y \frac{dy}{dx} = 0
\]

\[
\text{(diff. both sides w.r.t. } x)\]

\[
2x + y = (-2y - x) \frac{dy}{dx}
\]

\[
\frac{dy}{dx} = \frac{2x + y}{-2y - x}
\]

At $(1,1)$, slope is

\[
\frac{2(1) + 1}{-2(1) - 1} = -1
\]

Tangent line:

\[
(y - 1) = -1(x - 1)
\]
3. (10 points) Let \(f(x) = x^{2/3} \).

(a) Find the linearization of \(f(x) \) at the point \(a = 8 \).

\[
\begin{align*}
 \frac{d}{dx} f(x) &= \frac{2}{3} x^{-1/3} \\
 f'(8) &= \frac{2}{3} (8)^{-1/3} = \frac{1}{3} \\
 f(8) &= 4 \\
 \text{tangent line:} & \quad y - 4 = \frac{1}{3} (x - 8) \\
 y &= \frac{1}{3} x + \frac{4}{3}
\end{align*}
\]

\[
L(x) = \frac{1}{3} x + \frac{4}{3}
\]

(b) Estimate \((7.9993)^{2/3}\).

\[
\begin{align*}
 (7.9993)^{2/3} &\approx L(7.9993) \\
 &= \frac{7.9993}{3} + \frac{4}{3} = \frac{11.9993}{3} = 3.9997666...
\end{align*}
\]

Extra credit Using \(f''(x) \), can you say whether your estimate in (b) is an over- or under-estimate? Give an explanation with a picture.

\[
\begin{align*}
 \frac{d^2}{dx^2} f(x) &= -\frac{2}{9} x^{-4/3}, \\
 f''(8) &= -\frac{2}{9} (8)^{-4/3} < 0
\end{align*}
\]

Since \(f''(8) < 0 \), graph of \(y = x^{2/3} \) is concave down, so tangent line is above the graph.

So \(L(7.9993) \) is an overestimate.
4. (10 points)

(a) State the Mean Value Theorem.

If \(f \) is continuous on \([a, b]\) and differentiable on \((a, b)\) then there is a point \(c \) in \((a, b)\) where

\[
f'(c) = \frac{f(b) - f(a)}{b - a}
\]

(b) If \(f(0) = 4 \) and \(f'(x) \geq 6 \) for \(0 \leq x \leq 10 \), what can you say about \(f(10) \)? Explain your (mathematical) reasoning.

Using MVT, with \(a = 0 \), \(b = 10 \). At some \(c \) between 0 and 10,

\[
f'(c) = \frac{f(10) - 4}{10 - 0}
\]

and \(f'(c) \geq 6 \).

So \(\frac{f(10) - 4}{10} \geq 6 \).

\[
\Rightarrow f(10) - 4 \geq 60 \Rightarrow f(10) \geq 64
\]

(c) Give a non-mathematical explanation using a driving analogy.

If you drive along a road for 10 hours and your speed never drops below 60 mph, then you will travel at least 600 miles.
5(a) (6 points) Use implicit differentiation to find $\frac{dy}{dx}$ for each of the curves $y = ax^3$ and $x^2 + 3y^2 = b$.

\[
\begin{align*}
\frac{dy}{dx} &= 3ax^2 \\
2x + 6y \frac{dy}{dx} &= 0 \\
\frac{dy}{dx} &= \frac{-2x}{6y}
\end{align*}
\]

(b) (4 points) Show that the curves $y = ax^3$ and $x^2 + 3y^2 = b$ are orthogonal. [Hint: Use $y = ax^3$ to eliminate y from your expressions found in part (a).]

At any point (x, y) the curve $y = ax^3$ has slope $3ax^2$ and the curve $x^2 + 3y^2 = b$ has slope

\[
\frac{-2x}{6y} = \frac{-2x}{6ax^3} = \frac{-1}{3ax^2}.
\]

The product of the two slopes is

\[
(3ax^2) \left(\frac{-1}{3ax^2}\right) = -1
\]

so the curves are orthogonal.
6. (10 points) A particle is moving along the curve \(y = \sqrt{x} \). As the particle passes through the point \((9, 3)\), its \(x \)-coordinate is increasing at a rate of 4 units per second. How fast is the distance from the particle to the origin changing at this instant?

Let \(D(t) \) = distance from origin. Then

\[D(t)^2 = x(t)^2 + y(t)^2 \]

So

\[2D(t)D'(t) = 2x(t)x'(t) + 2y(t)y'(t) \]

At the given time we have

\[x = 9, \quad y = 3, \quad D = \sqrt{90}, \quad x' = 4. \]

From \(y(t) = \sqrt{x(t)} \) we get

\[y'(t) = \frac{1}{2} \frac{x'}{\sqrt{x(t)}} \]

So

\[y' = \frac{1}{2} \frac{4}{3} = \frac{2}{3} \]

Putting everything in we get:

\[2 \sqrt{90} \cdot D'(t) = 2(9)(4) + 2(3) \left(\frac{2}{3} \right) \]

\[D'(t) = \frac{38}{\sqrt{90}} \text{ units per second} \]