Complex complex numbers

Darryl McCullough

University of Oklahoma

March 31, 2001

To construct the complex numbers, we usually start with the real numbers, and define the complex numbers to be:

$$
a+b i, \quad a, b \in \mathbb{R}, \quad i^{2}=-1
$$

What happens if we try to construct "complex complex" numbers, by taking:

$$
z+w j, \quad z, w \in \mathbb{C}, \quad j^{2}=-1 \quad ?
$$

This does not work very well, for we then have

$$
(i+j)(i-j)=i^{2}-j^{2}=(-1)-(-1)=0
$$

so $1 /(i+j)$ could not exist.

But only a small modification is needed to obtain a beautiful number system, the quaternions:

$$
z+w j, \quad z, w \in \mathbb{C}, \quad j^{2}=-1, \quad j z=\bar{z} j
$$

This might not be the definition you have seen. Sometimes the quaternions are defined as

$$
\begin{gathered}
a+b i+c j+d k, a, b, c, d \in \mathbb{R}, \\
i^{2}=j^{2}=k^{2}=-1,
\end{gathered}
$$

plus several multiplication rules for i, j, and k.

That definition violates

Rule \# 1 of Quaternions:
Don't ever write k !
(just write $i j$)

My own uses for quaternions involve only the unit-length quaternions:

$$
S^{3}=\{z+w j \mid z \bar{z}+w \bar{w}=1\}
$$

The symbol S^{3} is used, because these quaternions form the 3-dimensional unit sphere in 4-dimensional space. That is, if we think of $z+w j$ as the complex pair (z, w) in $\mathbb{C}^{2}=$ \mathbb{R}^{4}, the condition that $z \bar{z}+w \bar{w}=1$ says exactly that as a 4-dimensional vector, (z, w) has length 1.

From now on, whenever we say quaternion, we will mean a unit-length quaternion.

Under the operation of quaternionic multiplication, S^{3} is a (nonabelian) group, that is, each element has an inverse in S^{3}. To see this, define the bar of a quaternion $q=z+w j$ to be

$$
\bar{q}=\overline{z+w j}=\bar{z}-w j
$$

This is in S^{3}, since $\bar{z} \overline{\bar{z}}+(-w) \overline{(-w)}=z \bar{z}+w \bar{w}=$ 1. We calculate

$$
\begin{gathered}
q \bar{q}=(z+w j)(\bar{z}-w j) \\
=z \bar{z}-z w j+w z j-w \bar{w} j^{2}=z \bar{z}+w \bar{w}=1
\end{gathered}
$$

that is, \bar{q} is q^{-1}. From this, we can deduce the following property of the bar function, without doing any additional computation:

$$
\overline{q_{1} q_{2}}=\left(q_{1} q_{2}\right)^{-1}=q_{2}^{-1} q_{1}^{-1}=\overline{q_{2}} \overline{q_{1}} .
$$

S^{3} is in some ways analogous to the group of S^{1} of unit complex numbers,

$$
S^{1}=\left\{a+b i \mid a^{2}+b^{2}=1\right\} .
$$

Notice that S^{1} can be regarded as a subgroup of S^{3}, it is just the quaternions of the form $z+0 j$. From the defining property of j, we have that if $z \in S^{1}$, then

$$
j z j^{-1}=\bar{z} j j^{-1}=\bar{z}
$$

As a group, S^{3} has a rich geometric and algebraic structure. Today we will examine a bit of this structure.

First, recall that two elements g and h of a group G are conjugate if there is a group element k so that $k g k^{-1}=h$.

We have already seen that if $z \in S^{1} \subset S^{3}$, then z and \bar{z} are conjugate:

$$
j z j^{-1}=\bar{z} j j^{-1}=\bar{z}
$$

We will find a very easy way to determine when any two given elements of S^{3} are conjugate.

Define the real part of $q=z+w j$ by putting $\Re(q)$ equal to $\Re(z)$, the real part of the complex number z. This makes sense, since then

$$
(q+\bar{q}) / 2=(z+w j+\bar{z}-w j) / 2=(z+\bar{z}) / 2=\Re(z)
$$

which agrees with the usual formula $\Re(z)=$ $(z+\bar{z}) / 2$ for complex numbers.

If two quaternions are conjugate, then they have the same real part. This is because

$$
\begin{aligned}
& \Re(k q \bar{k})=(k q \bar{k}+\overline{k q \bar{k}}) / 2=(k q \bar{k}+\overline{\bar{k}} \bar{q} \bar{k}) / 2 \\
& =k((q+\bar{q}) / 2) \bar{k}=k \bar{k}(q+\bar{q}) / 2=\Re(q)
\end{aligned}
$$

where we used the fact that a real number such as $(q+\bar{q}) / 2$ commutes with any quaternion.

With just a little more effort, one can show that the converse is true: if two quaternions have the same real part, then they are conjugate. Putting these together, we have the

Incredibly Useful Fact: Two elements of S^{3} are conjugate if and only if they have the same real part.

Since the real part is just the first coordinate in \mathbb{R}^{4}, this says that the conjugacy equivalence classes are exactly the slices of S^{3} by the 3planes $x_{1}=$ constant.

Notice that this relates algebraic structure (conjugacy) to geometric structure (the real part).

We will now use the Incredibly Useful Fact to find the conjugacy equivalence classes of elements of S^{3} of finite order.

Presumably, everything we will do can be done by direct computation, but that would violate

Rule \# 2 of Quaternions:

Use structure to minimize direct computation.

Recall that the order of an element g of a group G is the smallest positive n so that $g^{n}=$ 1 , or is ∞ if no such n exists.

If two elements of a group are conjugate, they must have the same order, since if $g^{n}=1$ then

$$
\begin{gathered}
\left(k g k^{-1}\right)^{n}=k g k^{-1} \cdot k g k^{-1} \cdot k \cdots k^{-1} \cdot k g k^{-1} \\
=k g^{n} k^{-1}=k \cdot 1 \cdot k^{-1}=1 .
\end{gathered}
$$

Many elements of S^{3} have finite order, for example:

$$
-1
$$

has order 2,

$$
i, \quad j, \quad i j, \quad \text { and } \quad \frac{1}{\sqrt{2}} i+\frac{1}{\sqrt{2}} j
$$

have order 4, and

$$
\frac{1}{2}+\frac{1}{2} \sqrt{1-2 \cos \left(\frac{2 \pi}{5}\right)} i+\cos \left(\frac{\pi}{5}\right) j
$$

has order 6.

Elements of order 2:
The element -1 has order 2 , and it is the only element of order 2. For suppose q has order 2. Since $-1 \leq \Re(q) \leq 1$, we have $\Re(q)=\cos (\theta)$ for some θ. By the Incredibly Useful Fact, q is conjugate to the element $\cos (\theta)+\sin (\theta) i$ of S^{1}. The only element of order 2 in S^{1} is -1 (because 1 and -1 are the only complex roots of the polynomial $x^{2}-1$), so q is conjugate to -1 , that is, $q=k(-1) \bar{k}=-k \bar{k}=-1$.

Elements of order 3:
Suppose q has order 3. By the Incredibly Useful Fact, q is conjuate to $\cos (\theta)+\sin (\theta) i$, where $\cos (\theta)=\Re(q)$. The only elements of order 3 in S^{1} are the cube roots of unity

$$
\cos \left(\frac{2 \pi}{3}\right) \pm \sin \left(\frac{2 \pi}{3}\right) i=-\frac{1}{2} \pm \frac{\sqrt{3}}{2} i
$$

which are conjugate (same real part). So there is only one conjugacy class of elements of order 3 , the elements with real part equal to $-\frac{1}{2}$.

Elements of order n :

Suppose q has order n. By the Incredibly Useful Fact, q is conjuate to $\cos (\theta)+\sin (\theta) i$, where $\cos (\theta)=\Re(q)$. The only elements of order n in S^{1} are the $n^{\text {th }}$ roots of unity that are not roots of unity for a smaller power. So the conjugacy classes of elements of order n in S^{3} correspond exactly to the complex conjugate pairs of $n^{\text {th }}$ roots of unity that are not roots of unity for a smaller power.

Thus, for example, there is one conjugacy class of elements of order 4 , the quaternions that are conjugate to i, and there are two conjugacy classes of elements of order 5 , conjugate to
$\cos \left(\frac{2 \pi}{5}\right) \pm \sin \left(\frac{2 \pi}{5}\right) i$ and $\cos \left(\frac{4 \pi}{5}\right) \pm \sin \left(\frac{4 \pi}{5}\right) i$

The next page is a picture of S^{3}, showing the elements of orders $2,3,4$, and 5 .

