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A Pythagorean triple (PT) is an ordered triple

(a, b, c) of positive integers such that a2 + b2 =

c2.

When a and b are relatively prime, the triple

is called a primitive PT (PPT). Each PT is a

positive integer multiple of a uniquely deter-

mined PPT.

Starting, for example, from (8,15,17), we ob-

tain the nonprimitive PT’s:

(16,30,34), (24,45,51), (32,60,68), . . .
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There is a method for generating all PPT’s,
which dates to antiquity (it is sometimes cred-
ited to Euclid). You can find a proof in al-
most any book on elementary number theory,
and you can find proofs or discussions of the
method on hundreds of websites of amateur
mathematicians.

Take a pair of relatively prime positive integers
(m,n) with m > n. Put:

1. T (m,n) = (m2−n2,2mn,m2 +n2) if one of
m or n is even.

2. T (m,n) =
(
m2−n2

2 ,mn, m
2+n2

2

)
if both of m

and n are odd.

For example, T (2,1) = (3,4,5) and T (3,1) =
(4,3,5). This gives each PPT once, and tak-
ing all their multiples gives all the PT’s.

Recently, a paper of P. Wade and W. Wade in
the College Math. J. gave another method for
generating PT’s.
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Define the height of (a, b, c) to be h = c− b.

Write h = pq2 where q is as large as possible
(that is, so that p is not divisible by the square
of any prime).

Define d =

pq if p is even

2pq if p is odd.

d is called the increment.

Start with (a0, b0) = (h,0). Recursively, define

(ak+1, bk+1) =

(
ak + d ,

d

h
ak + bk +

d2

2h

)
.

Then, the (ak, bk, bk + h) with k ≥ 1 are a list
of all the PT’s of height h. (PPT’s can only
occur when p = 1 or p = 2, that is, when h is
of the form q2 or 2q2.)
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For example, if h = 72 = 23 · 32 = 2 · 62, we

have p = 2 and q = 6, so d = pq = 12. This

gives

d

h
=

1

6
and

d2

2h
= 1 ,

and the recursion is

(ak+1, bk+1) =
(
ak + 12 , 1

6 ak + bk + 1
)
.

Starting from (72,0), we obtain:
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(72,0,72)
↓

(84, 13, 85)
↓

(96,28,100) = 4 (24, 7, 25)
↓

(108,45,117) = 9 (12, 5, 13)
↓

(120,64,136) = 8 (15, 8, 17)
↓

(132, 85, 157)
↓

(144,108,180) = 36 (4, 3, 5)
↓

(156, 133, 205)
↓

(168,160,232) = 8 (21, 20, 29)
↓

(180,189,261) = 9 (20, 21, 29)
↓
· · ·

(the PPT’s are in boldface)
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The proof that P. Wade and W. Wade gave
for their recursion formula is a complicated ap-
plication of the classical enumeration method.
Actually, they only gave a complete proof for
the cases when h is of the form q2 or 2q2.

Last spring, my undergraduate capstone stu-
dent Elizabeth Wade and I found a much sim-
pler proof that works for all choices of h. We
wrote it up as a paper, “Recursive Enumer-
ation of Pythagorean Triples,” which can be
downloaded from my website.

Our proof uses a different enumeration of the
PT’s, which we call the height-excess enumer-
ation. After we developed it, we searched for
it in the mathematical literature, and were fi-
nally able to find it (disguised in much differ-
ent forms) in two papers published in MAA
journals during the 1970’s. Also, in the late
1990’s it was rediscovered by two other math-
ematicians, who published it in the Southern
Missouri J. Math. Sci.
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Theorem 1 (The height-excess enumeration)
As one takes all pairs (k, h) of positive integers,
the formula

P (k, h) =

(
h+ dk, dk +

(dk)2

2h
, h+ dk +

(dk)2

2h

)
produces each Pythagorean triple exactly once.

Notice that h is the height of P (k, h).

Also, notice that dk = a + b − c. The num-
ber e = a + b − c is called the excess of the
PT, because it is the extra distance you have
to travel, if you go along the two legs of the
triangle instead of along the hypotenuse.
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Here is how the recursion formula follows from

the height-excess enumeration theorem:

The theorem tells us that P (1, h), P (2, h), . . . ,

are all the PT’s of height h. Write (ak, bk, ck)

for P (k, h), so that (ak, bk) =

(
h+ dk, dk +

(dk)2

2h

)
.

We compute that

(ak+1, bk+1)

=

(
h+ d(k + 1), d(k + 1) +

(d(k + 1))2

2h

)

=

(
h+ dk + d, dk + d+

(dk)2

2h
+ dk

d

h
+
d2

2h

)

=

(
ak + d,

d

h
(h+ dk) +

(
dk +

(dk)2

2h

)
+
d2

2h

)

=

(
ak + d,

d

h
ak + bk +

d2

2h

)
.

That is, the recursion formula just produces

P (k + 1, h) from P (k, h).
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The height-excess enumeration theorem is not

difficult to prove. First, we have a lemma that

tells the key number-theoretic property of the

increment d:

The numbers {d,2d,3d, . . . } are exactly

the positive integers whose squares are

divisible by 2h.

Lemma 2 Let h be a positive integer with as-

sociated increment d. Then 2h|d2. If D is any

positive integer for which 2h|D2, then d|D.

The proof uses nothing more than the unique

factorization of positive integers into primes.

You can prove it yourself, or read a proof in

the E. Wade-McC paper.
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Now for the proof of the height-excess enu-
meration theorem:

First, every P (k, h) is a PT. Its coordinates
are integers (since d2

2h is an integer), and the
fact that it is Pythagorean is just checked by
college algebra.

Second, we need to know that every PT is
P (k, h) for a unique pair (k, h).

College algebra shows that for any PT,

(a, b, c) =

(
h+ e, e+

e2

2h
, h+ e+

e2

2h

)
.

The Pythagorean relation implies that e2 =
2(c−a)(c−b) = 2h (c−a), so 2h|e2. By lemma 2,
e is divisible by d, that is, e can be written as
dk for some k. So (a, b, c) = P (k, h) for that
pair (k, h).

The pair (k, h) is uniquely determined: (a, b, c)
determines h = c− b and e = a+ b− c, h deter-
mines d, and e and d determine k since e = dk.
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It turns out that the height-excess enumera-

tion is good for a lot more than just prov-

ing the recursion formula. This seems not to

have been realized by its previous discoverers.

I have written a paper, “Height and Excess

of Pythagorean Triples,” which details many

uses. Most of these are new and simpler proofs

of known theorems about PT’s, but some are

new results.

For many of these applications, it is better not

to restrict ourselves to triples with positive en-

tries. A generalized Pythagorean triple (GPT)

is an ordered triple (a, b, c) of integers such that

a2 + b2 = c2. If we take all (k, h)-pairs of in-

tegers, the height-excess enumeration formula

produces each GPT exactly once:
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Theorem 3 (The height-excess enumeration)

Let P (k,0) = (0, k, k), and for h 6= 0 let

P (k, h) =

(
h+ dk, dk +

(dk)2

2h
, h+ dk +

(dk)2

2h

)
.

Then P is a bijection from Z× Z to the set of

all GPT’s.

This gives us nice “coordinates” on the set

of GPT’s with h 6= 0. A simple calculation

just using the fact that h = c − b and the

Pythagorean relation a2 + b2 = c2 shows that

(a, b, c) =

(
a,
a2 − h2

2h
,
a2 + h2

2h

)
.

By the height-excess enumeration theorem, a

and h determine a GPT exactly when a is of

the form a = h + kd. We denote this GPT by

[a, h], and call these the ah-coordinates of the

GPT.
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Some examples of GPT’s in ah-coordinates are:

1. [1,1] = (1,0,1), [1,−1] = (1,0,−1), [−1,1]
= (−1,0,1), and [−1,−1] = (−1,0,−1).

2. [3,1] = (3,4,5) and [4,2] = (4,3,5), while
[2,1] does not represent a GPT.

3. [q,1] =

(
q,
q2 − 1

2
,
q2 + 1

2

)
with q odd.

[5,1] = (5,12,13), [7,1] = (7,24,25),
[9,1] = (9,40,41).

4. [q, q2] =

(
q,

1− q2

2
,
q2 + 1

2

)
with q odd.

[3,9] = (3,−4,5), [5,25] = (5,−12,13).

5. [2s,2] = (2s,22s−2 − 1,22s−2 + 1), s > 1.

[4,2] = (4,3,5), [8,2] = (8,15,17),
[16,2] = (16,31,33), [32,2] = (32,63,65).

6. [2s,22s−1] = (2s,1− 22s−2,22s−2 + 1),
s > 1. [4,8] = (4,−3,5), etc.
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In a 1996 paper in the College Math. J., Beau-
regard and Suryanarayan examined an opera-
tion on the set of GPT’s, defined by

(a1, b1, c1) ∗ (a2, b2, c2) =

(a1a2, b1c2 + b2c1, b1b2 + c1c2)

By very clever arguments using the classical
enumeration, they developed a number of prop-
erties of the ∗-operation. These properties
(and more) can be developed much more eas-
ily, however, if one uses ah-coordinates. For
the height of (a1, b1, c1) ∗ (a2, b2, c2) is

b1b2 + c1c2 − (b1c2 + b2c1) =

(b1 − c1) (b2 − c2) = (−h1)(−h2) = h1h2 ,

so in ah-coordinates, the operation is simply:

[a1, h1] ∗ [a2, h2] = [a1a2, h1h2] ,

To illustrate the effectiveness of ah-coordinates,
we will give a simple proof of one of the theo-
rems of Beauregard and Suryanarayan.

First, we will have to set up the statement of
the theorem.
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The ∗-operation has an identity element, [1,1].

However, no elements except [±1,±1] have in-

verses. Also, a ∗-product of primitive elements

need not be primitive. For example,

(4,3,5) ∗ (4,3,5) = [4,2] ∗ [4,2] =

[16,4] = (16,30,34) = 2 (8,15,17) .

There is a way to improve this situation, using

a common mathematical device.

Declare two nonzero GPT’s to be equivalent

when they are positive multiples of the same

primitive GPT.

Putting this equivalence relation on a set is

called projectivization.
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Each equivalence class contains exactly one

primitive element. The other elements are just

the multiples of that element by positive inte-

gers. A typical equivalence class is

{(3,4,5), (6,8,10), . . . , (3n,4n,5n), . . . } .

What are the equivalence classes written in ah-

coordinates? Notice that

n[a, h] = n[a, c− b] = n(a, b, c) =

(na, nb, nc) = [na, nc− nb] = [na, nh] .

(You have to be careful, though, because this

formula only makes sense when [a, h] is defined.

For example, [4,2] = (4,3,5), while [2,1] is

undefined.)

Since n[a, h] = [na, nh], equivalence classes in

ah-coordinates just look like:

{[a, h], [2a,2h], [3a,3h], . . . , [na, nh], . . . } .

where [a, h] is a primitive GPT.
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You can check that if you ∗-multiply equivalent

GPT’s, you obtain equivalent results. That is,

the ∗-operation induces an operation on pro-

jective equivalence classes.

Since each equivalence class contains exactly

one primitive, another way of saying this is that

the ∗-operation induces an operation on prim-

itives, where you multiply and then reduce the

product, if necessary, as in:

(4,3,5) ∗ (4,3,5) = [4,2] ∗ [4,2] =

[16,4] ∼ [8,2] = (8,15,17) .

After you projectivize, the ∗-operation becomes

much more grouplike. For example,

(3,4,5) ∗ (3,−4,5) =

[3,1] ∗ [3,9] = [9,9] ∼ [1,1]

Now we are set up to state and prove the result

of Beauregard and Suryanarayan.
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Let G be the projective equivalence classes of

GPT’s of the form [a, h] with a > 0 and h > 0.

These are the (a, b, c) with a > 0 and c > 0.

Theorem 4 Define φ : (G, ∗)→ (Q>0, ·) by send-

ing [a, h] to a/h. Then φ is an isomorphism.

Proof: Since φ([na, nh]) = na
nh = a

h = φ([a, h]),

φ is a well-defined injection.

To check that φ is a homomorphism:

φ([a1, h1]) · φ([a2, h2]) =
a1

h1
·
a2

h2
=
a1a2

h1h2
= φ([a1a2, h1h2]) = φ([a1, h1] ∗ [a2, h2]) .

φ([4,2]) = 2, φ([4,8]) = 1/2, and for q an odd

prime, φ([q,1]) = q and φ([q, q2]) = 1/q. The

primes and their reciprocals generate Q>0, so

φ is surjective.
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To get a group from the Beauregard-Suryana-

rayan operation, we had to allow GPT’s with

b < 0. Is there a “natural” (that is, geomet-

rically meaningful) operation on GPT’s that

gives a group structure just on the set of pro-

jectivized PT’s? Yes, here is one:

(a1, b1, c1) (a2, b2, c2) =

(a1a2 + a1b2 + b1a2 + 2b1b2 − a1c2

−c1a2 − 2b1c2 − 2c1b2 + 2c1c2,

3a1a2 + a1b2 + b1a2 + b1b2 − 3a1c2

−3c1a2 − b1c2 − c1b2 + 3c1c2,

3a1a2 + a1b2 + b1a2 + 2b1b2 − 3a1c2

−3c1a2 − 2b1c2 − 2c1b2 + 4c1c2)

This operation may not look very natural, and

it is not obvious, from this description, that

it produces a group structure. Again, though,

everything is much more transparent if we use

better coordinates.
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The eh-coordinates of a GPT are just 〈e, h〉,
where e is the excess and h is the height. As
with ah-coordinates, only certain pairs repre-
sent GPT’s (those with e = dk). The 〈e, h〉
with e > 0 and h > 0 are exactly the PT’s.

Some examples of GPT’s in eh-coordinates are:

1. 〈2,1〉 = (3,4,5), 〈2,2〉 = (4,3,5),
〈2,−2〉 = (0,1,−1).

2. 〈2p,1〉 = (1 + 2p,2p+ 2p2,1 + 2p+ 2p2).
〈4,1〉 = (5,12,13), 〈6,1〉 = (7,24,25).

3. 〈2p,2〉 = (2 + 2p,2p+ p2,2 + 2p+ p2).
〈4,2〉 = (6,8,10), 〈6,2〉 = (8,15,17).

4. 〈2q, q2〉 = (q2 + 2q,2q + 2, q2 + 2q + 2).
〈4,4〉 = (8,6,10), 〈6,9〉 = (15,8,17).

5. 〈2s,22s−1〉 = (2s + 22s−1,1 + 2s,1 + 2s +
22s−1) with s ≥ 1.
〈2,2〉 = (4,3,5), 〈4,8〉 = (12,5,13),
〈8,32〉 = (40,9,41).
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You will not be surprised to learn that in eh-

coordinates, the operation given above is sim-

ply

〈e1, h1〉 〈e2, h2〉 = 〈e1e2, h1h2〉 .

This operation is poorly behaved at the level

of GPT’s. For example, there is no identity

element, since e is always even. However, at

the level of projective classes, 〈2,2〉 = (4,3,5)

is an identity. And, the set of projectived PT’s

PT is a group:

Theorem 5 The function ψ : PT → Q>0 that

sends 〈e, h〉 to e/h is an isomorphism.

The proof is essentially the same as for the

∗-operation.
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Moral: Always look for the
best coordinates.
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