Math 4853 homework

9. (2/12) For $1 \leq k \leq n$, let $\pi_{k}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be the projection function defined by $\pi_{k}\left(r_{1}, \ldots, r_{n}\right)=r_{k}$. Let $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ be a function. Define $f_{k}: \mathbb{R}^{m} \rightarrow \mathbb{R}$ by $f_{k}=\pi_{k} \circ f$, so that $f(x)=\left(f_{1}(x), f_{2}(x), \ldots, f_{n}(x)\right)$.
(a) Prove that π_{k} is continuous. Deduce that if f is continuous, then each f_{k} is continuous.
(b) Prove that if each f_{k} is continuous, then f is continuous. Hint: For each k, there exists δ_{k} so that $\left\|x-x_{0}\right\|<\delta_{k}$ implies $\left|f_{k}(x)-f_{k}\left(x_{0}\right)\right|<\frac{\epsilon}{\sqrt{n}}$. Put $\delta=\min _{1 \leq k \leq n}\left\{\delta_{k}\right\}$.
10. (2/12) For a set X we define $X \times X$ to be the set of ordered pairs of elements of X, that is, $X \times X=\{(a, b) \mid a, b \in X\}$. A metric on X is a function $d: X \times X \rightarrow \mathbb{R}$ satisfying
11. $d(a, b) \geq 0$ for all $a, b \in X$, and $d(a, b)=0$ if and only if $a=b$.
12. $d(a, b)=d(b, a)$ for all $a, b \in X$.
13. $d(a, b) \leq d(a, c)+d(c, b)$ for all $a, b, c \in X$.
(A metric is a function with the properties that we expect "distance" to have. For example, putting $d(x, y)=\|x-y\|$ defines a metric on \mathbb{R}^{n}.) If X is a set with a metric d, then for $x \in X$ and $\epsilon>0$, we define the open ball of radius ϵ centered at x to be $B(x, \epsilon)=\{z \in X \mid d(z, x)<\epsilon\}$. Prove the following:
(i) For all $\epsilon>0, a \in B(a, \epsilon)$.
(ii) If $z \in B(x, \epsilon)$, then $\exists \delta>0, B(z, \delta) \subseteq B(x, \epsilon)$.
(iii) If a subset W of X is a union of open balls, then $\forall x \in W, \exists \epsilon>0, B(x, \epsilon) \subseteq W$.
14. (no need to turn in, but ask about it in class if you have difficulty) For each of the following subsets of \mathbb{R}, determine whether the set is open, and whether its complement is open: $\{r \mid r>0\},\{r \mid r$ is not an integer $\},\{r \mid r$ is rational $\}$.
15. (no need to turn in, but ask about it in class if you have difficulty) For each of the following subsets of \mathbb{R}^{2}, determine whether the set is open, and whether its complement is open: $\left\{\left(r_{1}, r_{2}\right) \mid r_{1}>0\right\},\left\{\left(r_{1}, r_{2}\right) \mid r_{1}\right.$ is not an integer $\},\left\{\left(r_{1}, 0\right) \mid r_{1}\right.$ is not an integer $\}$, $\left\{\left(r_{1}, r_{2}\right) \mid r_{2}=\sin \left(r_{1}\right)\right\}$.
