Math 4853 homework

- 9. (2/12) For $1 \leq k \leq n$, let $\pi_k \colon \mathbb{R}^n \to \mathbb{R}$ be the projection function defined by $\pi_k(r_1, \ldots, r_n) = r_k$. Let $f \colon \mathbb{R}^m \to \mathbb{R}^n$ be a function. Define $f_k \colon \mathbb{R}^m \to \mathbb{R}$ by $f_k = \pi_k \circ f$, so that $f(x) = (f_1(x), f_2(x), \ldots, f_n(x))$.
 - (a) Prove that π_k is continuous. Deduce that if f is continuous, then each f_k is continuous.
 - (b) Prove that if each f_k is continuous, then f is continuous. Hint: For each k, there exists δ_k so that $||x x_0|| < \delta_k$ implies $|f_k(x) f_k(x_0)| < \frac{\epsilon}{\sqrt{n}}$. Put $\delta = \min_{1 \le k \le n} \{\delta_k\}$.
- 10. (2/12) For a set X we define $X \times X$ to be the set of ordered pairs of elements of X, that is, $X \times X = \{(a, b) \mid a, b \in X\}$. A *metric* on X is a function $d: X \times X \to \mathbb{R}$ satisfying
 - 1. $d(a,b) \ge 0$ for all $a, b \in X$, and d(a,b) = 0 if and only if a = b.
 - 2. d(a,b) = d(b,a) for all $a, b \in X$.
 - 3. $d(a,b) \leq d(a,c) + d(c,b)$ for all $a, b, c \in X$.

(A metric is a function with the properties that we expect "distance" to have. For example, putting d(x, y) = ||x - y|| defines a metric on \mathbb{R}^n .) If X is a set with a metric d, then for $x \in X$ and $\epsilon > 0$, we define the open ball of radius ϵ centered at x to be $B(x, \epsilon) = \{z \in X \mid d(z, x) < \epsilon\}$. Prove the following:

- (i) For all $\epsilon > 0, a \in B(a, \epsilon)$.
- (ii) If $z \in B(x, \epsilon)$, then $\exists \delta > 0, B(z, \delta) \subseteq B(x, \epsilon)$.
- (iii) If a subset W of X is a union of open balls, then $\forall x \in W, \exists \epsilon > 0, B(x, \epsilon) \subseteq W$.
- 11. (no need to turn in, but ask about it in class if you have difficulty) For each of the following subsets of \mathbb{R} , determine whether the set is open, and whether its complement is open: $\{r \mid r > 0\}, \{r \mid r \text{ is not an integer }\}, \{r \mid r \text{ is rational}\}.$
- 12. (no need to turn in, but ask about it in class if you have difficulty) For each of the following subsets of \mathbb{R}^2 , determine whether the set is open, and whether its complement is open: $\{(r_1, r_2) \mid r_1 > 0\}, \{(r_1, r_2) \mid r_1 \text{ is not an integer}\}, \{(r_1, 0) \mid r_1 \text{ is not an integer}\}, \{(r_1, r_2) \mid r_2 = \sin(r_1)\}.$