Math 4853 homework

1. (due 2/3) Let \(f : \mathbb{R} \rightarrow \mathbb{R} \) be the function defined by \(f(x) = x^2 \). Prove (directly from the definition) that \(f \) is continuous.

2. (2/3) Let \(f : \mathbb{R} \rightarrow \mathbb{R} \) be the function defined as follows.
 \[
 f(x) = \begin{cases}
 (q - 1)/q & \text{if } x \text{ is rational and } x = \pm \frac{p}{q} \text{ in lowest terms with } p \geq 0 \text{ and } q > 0 \\
 1 & \text{if } x \text{ is irrational}
 \end{cases}
 \]
 Prove (directly from the definition) that if \(x \) is irrational, then \(f \) is continuous at \(x \).

3. (2/3) Let \(f : \mathbb{R} \rightarrow \mathbb{R} \) be the function defined as follows.
 \[
 f(x) = \begin{cases}
 1 & x \in \mathbb{Q} \\
 0 & x \notin \mathbb{Q}
 \end{cases}
 \]
 [where \(\mathbb{Q} \) denotes the set of rational numbers] Use proof by contradiction to prove that \(f \) is not continuous at any \(x_0 \).

4. (2/3) Let \(f : \mathbb{R} \rightarrow \mathbb{R} \) be the function defined as follows.
 \[
 f(x) = \begin{cases}
 1/q & x \text{ is rational and } x = p/q \text{ in lowest terms with } q > 0 \\
 0 & x \text{ is irrational}
 \end{cases}
 \]
 Use proof by contradiction to prove that if \(x \) is rational, then \(f \) is not continuous at \(x \).

5. (2/12) Prove directly from the definition of continuity that if \(f : \mathbb{R} \rightarrow \mathbb{R} \) and \(g : \mathbb{R} \rightarrow \mathbb{R} \) are continuous at \(x_0 \), and \(g(x_0) \neq 0 \), then the quotient function \(f/g \) is continuous at \(x_0 \).

6. (2/12) Let \(f : \mathbb{R} \rightarrow \mathbb{R} \) and \(g : \mathbb{R} \rightarrow \mathbb{R} \) be continuous functions. Prove that the composite function \(g \circ f \) is continuous.

7. (2/12) Prove that if \(f : \mathbb{R} \rightarrow \mathbb{R} \) and \(g : \mathbb{R} \rightarrow \mathbb{R} \) are continuous at \(x_0 \), and \(g(x_0) \neq 0 \), then the quotient function \(f/g \) is continuous at \(x_0 \) as follows: First prove that the reciprocal function defined by \(k(x) = 1/x \) is continuous, then apply the facts that composites and products of continuous functions are continuous.

8. (2/12) Let \(f : \mathbb{R}^m \rightarrow \mathbb{R}^n \) and \(g : \mathbb{R}^n \rightarrow \mathbb{R}^k \) be continuous functions. Prove that the composite function \(g \circ f : \mathbb{R}^m \rightarrow \mathbb{R}^k \) is continuous.