Math 4853 homework

1. (due $2 / 3$) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the function defined by $f(x)=x^{2}$. Prove (directly from the definition) that f is continuous.
2. (2/3) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the function defined as follows.

$$
f(x)= \begin{cases}(q-1) / q & x \text { is rational and } x= \pm \frac{p}{q} \text { in lowest terms with } p \geq 0 \text { and } q>0 \\ 1 & x \text { is irrational }\end{cases}
$$

Prove (directly from the definition) that if x is irrational, then f is continuous at x.
3. $(2 / 3)$ Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the function defined as follows.

$$
f(x)= \begin{cases}1 & x \in \mathbb{Q} \\ 0 & x \notin \mathbb{Q}\end{cases}
$$

[where \mathbb{Q} denotes the set of rational numbers] Use proof by contradiction to prove that f is not continuous at any x_{0}.
4. (2/3) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the function defined as follows.

$$
f(x)= \begin{cases}1 / q & x \text { is rational and } x=p / q \text { in lowest terms with } q>0 \\ 0 & x \text { is irrational }\end{cases}
$$

Use proof by contradiction to prove that if x is rational, then f is not continuous at x.
5. (2/12) Prove directly from the definition of continuity that if $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ are continuous at x_{0}, and $g\left(x_{0}\right) \neq 0$, then the quotient function f / g is continuous at x_{0}.
6. (2/12) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ be continuous functions. Prove that the composite function $g \circ f$ is continuous.
7. $(2 / 12)$ Prove that if $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ are continuous at x_{0}, and $g\left(x_{0}\right) \neq 0$, then the quotient function f / g is continuous at x_{0} as follows: First prove that the reciprocal function defined by $k(x)=1 / x$ is continuous, then apply the facts that composites and products of continuous functions are continuous.
8. (2/12) Let $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ and $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ be continuous functions. Prove that the composite function $g \circ f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{k}$ is continuous.

