Math 4853 homework

61. Let \(\{z_n = (x_n, y_n)\} \) be a sequence in \(X \times Y \). Prove that \(\{z_n\} \to (x, y) \) if and only if \(\{x_n\} \to x \) and \(\{y_n\} \to y \). Hint: For one direction, you can use an earlier problem applied to the projection functions.

Suppose first that \(\{z_n\} \to (x, y) \). By problem 59, \(\{\pi_X(z_n)\} \to \pi_X((x, y)) \), that is, \(\{x_n\} \to x \), and similarly \(\{y_n\} \to y \). Conversely, assume that \(\{x_n\} \to x \) and \(\{y_n\} \to y \). Let \(W \) be a neighborhood of \((x, y) \), and choose a basic open set \(U \times V \) such that \((x, y) \in U \times V \subseteq W \).

Since \(x \in U \) and \(y \in V \), there exist \(N_1 \) and \(N_2 \) such that if \(n \geq N_1 \) then \(x_n \in U \), and if \(n \geq N_2 \) then \(y_n \in V \). So if \(n \geq \max\{N_1, N_2\} \), \((x_n, y_n) \in U \times V \subseteq W \).

62. Prove that every uncountable subset of \(\mathbb{R} \) has a limit point in \(\mathbb{R} \). (Let \(A \) be an uncountable subset of \(\mathbb{R} \), and for \(n \in \mathbb{Z} \) put \(A_n = A \cap [n, n+1] \).)

Suppose that \(A \) is an uncountable subset of \(\mathbb{R} \). For \(n \in \mathbb{Z} \) put \(A_n = A \cap [n, n+1] \), so that \(A = \bigcup_{n \in \mathbb{Z}} A_n \). If every \(A_n \) were finite, then \(A \) would be a countable union of finite sets, so would be countable. So some \(A_n \), say \(A_N \), is infinite. Since \(A_N \subseteq [N, N+1] \), which is compact, \(A_N \) has a limit point \(x_0 \) in \([N, N+1]\). It is also a limit point of \(A \) in \(\mathbb{R} \), since if \(U \) is any neighborhood of \(x_0 \) in \(\mathbb{R} \), then \(U \cap [N, N+1] \) is a neighborhood of \(x_0 \) in \([N, N+1]\), so contains a point of \(A_N \) other than \(x_0 \).

63. Let \(\{x_n\} \) be a sequence in a metric space \(X \). Prove that if \(x_n \to x \), then \(\{x_n\} \) is Cauchy.

Given \(\epsilon > 0 \), choose \(N \) so that if \(n > N \), then \(d(x_n, x) < \epsilon/2 \). If \(m, n > N \), then \(d(x_m, x_n) \leq d(x_m, x) + d(x, x_n) < \epsilon/2 + \epsilon/2 = \epsilon \).

64. Give \(\mathbb{R}^k \) the metric \(d(x, y) = \|x - y\| \). Let \(\{z_n\} \) be a sequence of points in \(\mathbb{R}^k \), written in coordinates as \(z_n = (z_n^1, z_n^2, \ldots, z_n^k) \). Prove that \(\{z_n\} \) is Cauchy if and only if each \(\{z_n^i\} \) is a Cauchy sequence in \(\mathbb{R}, \|x - y\| \).

Assume that \(\{z_n\} \) is Cauchy. Given \(\epsilon > 0 \), choose \(N \) so that if \(m, n > N \), then \(\|z_m - z_n\| < \epsilon \). For this \(N \) and for each \(1 \leq i \leq n \), we have \(|z_m^i - z_n^i| = \sqrt{(z_m^i - z_n^i)^2} \leq \sqrt{\sum_{j=1}^{n}(z_m^j - z_n^j)^2} = \|z_m - z_n\| < \epsilon \).

Conversely, assume that each \(\{z_n^i\} \) is Cauchy, and let \(\epsilon > 0 \) be given. For each \(i \), there exists \(N_i \) such that if \(m, n > N_i \), then \(|z_m^i - z_n^i| < \epsilon/\sqrt{n} \). Let \(N = \max N_i \). For \(m, n > N \), we have \(\|z_m - z_n\| = \sqrt{\sum_{i=1}^{n}(z_m^i - z_n^i)^2} < \sqrt{\sum_{i=1}^{n}(\epsilon/\sqrt{n})^2} = \sqrt{\sum_{i=1}^{n} \epsilon^2/n} = \sqrt{\epsilon^2} = \epsilon \).
65. Let \(\{ f_n \} \) be a sequence of functions in \(C([0,1], \mathbb{R}^k) \) (the set of continuous functions from \([0,1]\) to \(\mathbb{R}^k\)). Prove that if \(\{ f_n \} \to f \) uniformly, then \(\{ f_n \} \to f \) pointwise.

Fix \(x_0 \in [0,1] \), and let \(\epsilon > 0 \). Since \(\{ f_n \} \to f \) uniformly, there exists \(N \) so that if \(n \geq N \), then for every \(x \in [0,1] \), \(\| f_n(x) - f(x) \| < \epsilon \). In particular, if \(n \geq N \), then \(\| f_n(x_0) - f(x_0) \| < \epsilon \). Therefore \(\{ f(x_0) \} \to f(x_0) \).

66. Let \(f_n : [0,1] \to \mathbb{R} \) be \(f_n(x) = x^n \), and let \(f : [0,1] \to \mathbb{R} \) be defined by \(f(x) = 0 \) if \(x < 1 \) and \(f(1) = 1 \). Using the definitions, prove that \(f_n \to f \) pointwise but not uniformly.

For pointwise convergence, suppose first that \(0 \leq x_0 < 1 \). Then by calculus, \(\{ x_0^n \} \to 0 = f(x_0) \). For \(x_0 = 1 \), \(\{ x_0^n \} = \{ 1 \} \to 1 = f(x_0) \).

Suppose for contradiction that \(\{ x^n \} \to f \) uniformly. Then there exists \(N \) so that if \(n \geq N \), then for all \(x \in [0,1] \), \(|x^n - f(x)| < 1/2 \). Fix \(n_0 > N \), and put \(z_n = 1 - 1/n \). Then \(\{ z_n \} \to 1 \). Since the function \(x^{n_0} \) is continuous, \(\{ z^{n_0}_n \} \to 1^{n_0} = 1 \). Therefore there exists \(n_1 \) such that \(z^{n_0}_{n_1} > 1/2 \), so \(|z^{n_0}_{n_1} - f(z_{n_1})| = |z^{n_0}_{n_1}| > 1/2 \), a contradiction.