Math 4853 homework

43. (a) Let $B \subseteq A \subseteq X$. Prove that B is closed in the subspace topology on A if and only if there exists a closed subset $C \subseteq X$ such that $B = C \cap A$.

(b) Prove that if A is a closed subset of X and B is a closed subset of Y, then $A \times B$ is a closed subset of $X \times Y$. Hint: Find a simple description of $X \times Y - A \times B$.

(c) Let $f: X \to Y$ be a function. Prove that f is continuous if and only if for every closed subset $C \subseteq Y$, the inverse image $f^{-1}(C)$ is closed in X.

(a) Assume that B is closed in A. Then $A - B$ is open in A, so there exists V open in X such that $V \cap A = A - B$. Since V is open in X, $C = X - V$ is closed in X, and $C \cap A = (X - V) \cap A = A - V \cap A = B$. Conversely, assume that there exists C closed in X such that $C \cap A = B$. Since C is closed, $X - C$ is open, and $(X - C) \cap A = A - (C \cap A) = A - B$, so $A - B$ is open in A and therefore B is closed in A.

(b) Observe that $X \times Y - A \times B = ((X - A) \times Y) \cup (X \times (Y - B))$ [since $(x, y) \notin A \times B \iff (x \notin A$ or $y \notin B) \iff x \in X - A$ or $y \in Y - B \iff (x, y) \in (X - A) \times Y$ or $(x, y) \in X \times (Y - B)$]. Since A is closed, $X - A$ is open in X and similarly $Y - B$ is open in Y, so $((X - A) \times Y) \cup (X \times (Y - B))$ is a union of two basic open sets and consequently is open.

(c) Assume that f is continuous, and let C be closed in Y. Then $Y - C$ is open, so $f^{-1}(Y - C) = X - f^{-1}(C)$ is open, and therefore $f^{-1}(C)$ is closed. Conversely, assume that $f^{-1}(C)$ is closed for every closed subset C of Y. Let U be open in Y. Then $Y - U$ is closed, so $f^{-1}(Y - U) = X - f^{-1}(U)$ is closed, so $f^{-1}(U)$ is open.

44. Let $S \subseteq X$.

(a) Prove that $x \in \overline{S}$ if and only if every neighborhood of x contains a point of S.

(b) Prove that S is closed if and only if $S = \overline{S}$.

(c) Prove that $\overline{S} = \cap\{A \subseteq X \mid A$ is closed and $S \subseteq A\}$.

(d) Let $f: X \to Y$ be continuous. Prove that $f(\overline{S}) \subseteq \overline{f(S)}$.

(e) Give an example of a continuous surjective function $f: X \to Y$ and a subset $S \subseteq X$ such that $f(S) \neq f(\overline{S})$.

(a) Assume that $x \in \overline{S}$. Let U be an open neighborhood of x. If $x \in S$, then U contains the point x of S. If $x \in S'$, then $U - \{x\}$ contains a point of S. In either case, U contains a point of S. Conversely, assume that every neighborhood of x contains a point of S. If $x \in S$, then $x \in S \cup S' = \overline{S}$. If $x \notin S$, then $x \in S'$ since every neighborhood of x contains a point of S, which cannot be x since $x \notin S$. In either case, $x \in \overline{S}$.

(b) Assume that S is closed. Since $S \subseteq S$, Proposition 2 says that $\overline{S} \subseteq S$. By definition, $S \subseteq S \cup S' = \overline{S}$. Therefore $S = \overline{S}$. Conversely, assume that $S = \overline{S}$. By Proposition 1, \overline{S} and therefore S are closed.

(c) If A is any closed set with $S \subseteq A$, then by Proposition 2, $\overline{S} \subseteq A$. Therefore $\overline{S} \subseteq \cap\{A \subseteq X \mid A$ is closed and $S \subseteq A\}$. On the other hand, \overline{S} is a closed set that contains S, so is among the sets in the collection being intersected in the expression $\cap\{A \subseteq X \mid A$ is closed and $S \subseteq A\} \subseteq \overline{S}$.

(d) Let \(x \in \mathcal{S} \). Let \(U \) be any neighborhood of \(f(x) \). Then \(f^{-1}(U) \) is open and \(x \in f^{-1}(U) \). Since \(x \in \mathcal{S} \), \(f^{-1}(U) \) must contain a point \(s \) of \(S \). Then, \(f(s) \in f(S) \cap U \). We have shown that every neighborhood of \(f(x) \) contains a point of \(f(S) \), so by part (a), \(f(x) \in \overline{f(S)} \).

(e) Example 1: Let \(X = (-2, -1) \cup [1, 2], \ Y = [1, 4] \), and \(f : X \to Y \) be defined by \(f(x) = x^2 \). Then \(f((-2, -1)) = f((2, -1)) = (1, 4) \neq (1, 4) = f((-2, -1)) \).

Example 2: Let \(X = [0, 2\pi] \), \(Y = S^1 \), and \(f : X \to Y \) be \(f(t) = (\cos(t), \sin(t)) \). Let \(S = [\pi, 2\pi] \), which is closed in \(X \). The image \(f(S) \) is not closed in \(Y \), so \(f(S) \neq f(\overline{S}) \).

Example 3: Let \(X = \mathbb{R}^2 \) and \(Y = \mathbb{R} \), and let \(\pi : X \to Y \) be projection to the first coordinate. Let \(S = \{(x, y) \mid x \neq 0 \text{ and } y = 1/x\} \). Then \(S \) is closed in \(X \), but \(\pi(S) = \mathbb{R} - \{0\} \) is not closed in \(Y \), so \(f(S) = f(S) \neq f(\overline{S}) \).

45. Let \(X \) be \(\mathbb{R} \) with the lower-limit topology, and let \(A \) be the subspace \([0, 1]\) of \(X \). Give an example of a continuous unbounded function from \(A \) to \(\mathbb{R} \).

Define \(f : X \to \mathbb{R} \) by \(f(x) = 1/(1-x) \) if \(x < 1 \) and \(f(x) = 0 \) if \(x \geq 1 \). This is continuous, since for every \(x_0 \), the limit from the right \(\lim_{x \to x_0^+} f(x) \) equals \(f(x_0) \). Let \(f_A : A \to \mathbb{R} \) be the restriction of \(f \). Then \(f_A \) is continuous, since it is the restriction of a continuous function to a subspace, and \(f_A \) is unbounded.

46. Let \(X = \{1/n \mid n \in \mathbb{N}\} \cup \{0\} \), a subspace of \(\mathbb{R} \). Prove that every continuous function \(f : X \to \mathbb{R} \) is bounded, by considering the open set \(V = (f(0) - 1, f(0) + 1) \).

Let \(V = f^{-1}((f(0) - 1, f(0) + 1)) \). Since \(f \) is continuous, this is an open neighborhood of 0 in \(X \). Since it is open in \(X \), it must contain \((-\epsilon, \epsilon) \cap X \) for some \(\epsilon > 0 \). Choose \(N \) with \(1/N < \epsilon \), and let \(M = \max\{f(0)+1, f(1), f(1/2), \ldots, f(1/N)\} \). We claim that \(M \) is an upper bound for \(f(X) \). Let \(y \in f(X) \). If \(y = f(0) \), then \(f(0) < f(0) + 1 \leq M \). If \(y = f(1/n) \) for \(n \leq N \), then \(f(1/n) \in \{f(0) + 1, f(1), f(1/2), \ldots, f(1/N)\} \) so \(f(1/n) \leq M \). Finally, if \(y = f(1/n) \) for \(n \geq N \), then \(1/n \in (-\epsilon, \epsilon) \cap X \in f^{-1}(V) \), so \(f(1/n) \in V \) and therefore \(f(1/n) < f(0) + 1 \leq M \). In any case, \(y \leq M \). Similarly, \(\min\{f(0) - 1, f(1), f(1/2), \ldots, f(1/N)\} \) is a lower bound for \(f(X) \).

47. Let \(X \) be a topological space. Prove that if \(X \) is compact, then every continuous function \(f : X \to \mathbb{R} \) is bounded. Use the open cover \(\{V_n\}_{n \in \mathbb{N}} \) of \(\mathbb{R} \), where \(V_n = (-n, n) \).

For \(n \in \mathbb{N} \), define \(U_n = f^{-1}(V_n) \), an open subset of \(X \). We have \(X = f^{-1}(\mathbb{R}) = f^{-1}(\bigcup_{n \in \mathbb{N}} V_n) = \bigcup_{n \in \mathbb{N}} f^{-1}(V_n) = \bigcup_{n \in \mathbb{N}} U_n \), so \(\{U_n\}_{n \in \mathbb{N}} \) is an open cover of \(X \). Since \(X \) is compact, this has a finite subcover, say \(\{U_{n_i}\}_{i=1}^k \). So \(f(X) \subseteq \bigcup_{i=1}^k V_{n_i} = V_N \) where \(N = \max\{n_i\} \). That is, \(f(X) \subseteq (-N, N) \) so \(f \) is bounded.

48. (4/14) For any set \(X \), the cofinite topology on \(X \) is the topology in which a set is open if and only if it is either empty or has finite complement. Prove that any set \(X \) with the cofinite topology is compact.
Let X have the cofinite topology. If X is empty, it is compact, so we may assume that X is nonempty. Let $\{U_\alpha\}_{\alpha \in A}$ be an open cover of X. Some U_{α_0} must be nonempty. Write $U_{\alpha_0} = X - F$, where F is finite, say $F = \{x_1, x_2, \ldots, x_k\}$. For each i with $1 \leq i \leq k$, choose some U_{α_i} with $x_i \in U_{\alpha_i}$. Then, $\{U_{\alpha_0}, U_{\alpha_1}, \ldots, U_{\alpha_k}\}$ is a finite subcover of $\{U_\alpha\}_{\alpha \in A}$. For let x be any element of X. If $x \in F$, say $x = x_i$, then $x \in U_{\alpha_i}$. If $x \notin F$, then $x \in U_{\alpha_0}$.

49. Prove that if A is a compact subset of \mathbb{R}, then A is bounded (i.e., A lies in some interval $[-M, M]$).

For $n \geq 1$, let $U_n = A \cap (-n, n)$, and open subset of A. Since A is compact, there exists a finite subcollection of the U_n such that $A = \bigcup_{n=1}^{k} U_{n_i} = \bigcup_{i=1}^{k} (A \cap (-n_i, n_i)) = A \cap (\bigcup_{i=1}^{k} (-n_i, n_i)) = A \cap (-N, N)$, where $N = \max\{n_1, \ldots, n_k\}$. So A lies in some finite interval and therefore is bounded.

50. Prove that if A is a compact subset of \mathbb{R}, then A is closed. (Hint: It seems easiest to argue the contrapositive: if A is not closed then it is not compact. If A is not closed, then $A \neq \overline{A} = A \cup A'$, so there is some limit point x_0 of A that is not contained in A. Then...

We will prove the contrapositive. Assume that A is not closed. Then $A \neq \overline{A} = A \cup A'$, so there is some limit point x_0 of A that is not contained in A. Consider the continuous function $f: \mathbb{R} - \{x_0\} \to \mathbb{R}$ defined by $f(x) = \frac{1}{x - x_0}$, and let $g: A \to \mathbb{R}$ be the restriction of f to A. We will show that g is unbounded.

Suppose for contradiction that g is bounded. Then there exists M so that $g(A) \subseteq [-M, M]$. We may choose $M > 0$. That is, $a \in A$ implies $|g(a)| \leq M$. This says $\frac{1}{|a - x_0|} \leq M$, so $|a - x_0| \geq \frac{1}{M}$. Therefore there is no point of A in the interval $(x_0 - \frac{1}{M}, x_0 + \frac{1}{M})$, contradicting the fact that x_0 is a limit point of A.

[One can obtain the contradiction directly from the definition as follows: For $n \in \mathbb{N}$, let $U_n = (x_0 - \frac{1}{n}, x_0 + \frac{1}{n}) \cap A$. Since $x_0 \notin A$, the U_n form an open cover of A, and since $x_0 \in A'$, there is no finite subcover.]