
Math 4853 homework

26. Take as known the fact that a composition of bijections is a bijection (prove this if it
is not already clear to you).
(a) Show that if X and Y are countable sets, then there is a bijection from X to Y .
(b) Let X be a countable set and suppose there is a bijection from Y to X. Show that
Y is also countable.

Assume that X and Y are countable, and let φX : X → N and φY : Y → N be bijections.
Then φ−1

Y ◦ φX is a bijection from X to Y .
For (b), assume that X is countable and that φ : Y → X is a bijection. Since X is

countable, there exists a bijective function φX : X → N. But then, φX ◦ φ is a bijective
function from Y to X, so Y is also countable.

27. State a theorem that the following argument proves: For each x ∈ X, Φ−1({x}) is a
nonempty subset of N, so has a minimal element; define φ(x) to be the minimal element
of Φ−1({x}). If x1 6= x2, then Φ−1({x1}) ∩ Φ−1({x2}) is empty, so φ(x1) 6= φ(x2). So
φ is a bijection from X to a subset A of N. Since A must be countable, X is also
countable.

It proves: If there exists a surjective function Φ: N→ X, then X is countable.

28. Prove that the product P = {0, 2} × {0, 2} × {0, 2} × · · · = {(a1, a2, a3, . . .) | ai ∈
{0, 2}} is uncountable. Prove that the subset A ⊂ P defined by A = {(a1, a2, . . .) ∈
P | ∃N, ∀n > N, an = 0} is countable.

Suppose for contradiction that there is a bijection from P to N, then its inverse is a
bijection φ : N→ P . For each n ∈ N, write φ(n) = (a1, a2, . . .) and put bn = 2 if an = 0 and
bn = 0 if an = 2. Let b = (b1, b2, b3, . . .). Then b differs in the nth coordinate from φ(n), so
b 6= φ(n) for any n. This contradicts the surjectivity of φ.

For each N define PN = {(a1, a2, . . .) | an = 0 for all n > N}. Then an element a of P is
in A if and only if it lies in some PN . Therefore A = ∪∞N=1PN is a union of countably many
countable sets, so A is countable.

29. Let X be a topological space. Suppose that B is a collection of subsets of X such that

(1) The sets in B are open in X.

(2) For every open set U in X and every x ∈ U , there exists B ∈ B such that
x ∈ B ⊆ U .

(a) Prove that B is a basis.

(b) Prove that the topology {V ⊆ X | ∀x ∈ V, ∃B ∈ B, x ∈ B ⊆ V } generated by B equals
the topology of X.



For (a), let x ∈ X. By (2), there exists Bx ∈ B such that x ∈ Bx ⊆ X. Therefore
X = ∪x∈X{x} ⊆ ∪x∈XBx ⊆ X, so X = ∪x∈XBx. Now, let B1, B2 ∈ B and x ∈ B1 ∩ B2.
By (1), B1 and B2 are open, so B1 ∩ B2 is open. By (2), there exists B ∈ B such that
x ∈ B ⊆ B1 ∩B2.

For (b), suppose first that U is open in X. For each x ∈ U , (2) says there exists Bx ∈ B
such that x ∈ Bx ⊆ U . Therefore U is in the topology generated by B.

Suppose now that V is in the topology generated by B. By definition, for each x ∈ V ,
there exists Bx ∈ B such that x ∈ Bx ⊆ V . Therefore V = ∪x∈V {x} ⊆ ∪x∈VBx ⊆ V , so
V = ∪x∈VBx. By (1), each Bx is open in X, so V , being a union of open sets in X, is also
open.

30. Use the previous problem to give a quick proof that if X is a topological space, A is a
subset of X, and B is a basis for the topology of X, then {B ∩ A | B ∈ B} is a basis
for the subspace topology on A.

Each B is open in X, so each B ∩A is open in the subspace topology by definition. Now
let U ⊂ A be open in the subspace topology, and let a ∈ U . By definition, there exists V
open in X such that U = V ∩A. Since x ∈ U ⊆ V , there exists B ∈ B such that x ∈ B ⊆ V .
Therefore x ∈ B ∩A ⊆ V ∩A = U . By the Basis Recognition Theorem, {B ∩A | B ∈ B} is
a basis for the subspace topology on A.

31. Let f : X → Y and g : Y → Z be functions between topological spaces.

(a) Check that for any subset V ⊆ Z, (g ◦ f)−1(V ) = f−1(g−1(V )).

(b) Prove that if f and g are continuous, then g ◦ f is continuous.

(c) Give an example of non-continuous functions f : R→ R and g : R→ R whose compo-
sition is continuous.

For (a), x ∈ (g ◦ f)−1(V ) if and only if (g ◦ f)(x) ∈ V if and only if g(f(x)) ∈ V if and
only if f(x) ∈ g−1(V ) if and only if x ∈ f−1(g−1(V )).

For (b), suppose that f and g are continuous and W is open in Z. Since g is continuous,
g−1(W ) is open in Y . Since f is continuous, f−1(g−1(W )) is open in X. By (a), this says
that (g ◦ f)−1(W ) is open in X, so g ◦ f is continuous.

For (c), define f, g : R → R by f(x) = 1 if x < 0 and f(x) = 2 if x ≥ 0, and g(x) = 0 if
x < 0 and g(x) = 1 if x ≥ 0. Neither f nor g is continuous, but g ◦ f is constant and hence
is continuous (and f ◦ f , f ◦ g, and g ◦ g are also constant).

Another example is f(x) = −x if x ∈ Q and f(x) = x if x /∈ Q, g(x) = x if x ∈ Q and
g(x) = −x if x /∈ Q. Then, f and g are discontinuous, but all of f ◦ g, g ◦ f , f ◦ f , and g ◦ g
are continuous.

32. Let f : X → Y be a function between topological spaces, and let B be a basis for the
topology on Y . Prove that if f−1(B) is open for every B ∈ B, then f is continuous.



Assume that f−1(B) is open for every B ∈ B. Let V be open in Y and let x ∈ f−1(V ).
Then f(x) ∈ V . Since B is a basis, there exists B ∈ B such that f(x) ∈ B ⊆ V . Therefore
x ∈ f−1(B) ⊆ f−1(V ). By the usual argument, this shows that f−1(V ) is a union of sets
having the form f−1(B) with B ∈ B. By assumption, every such f−1(B) is open in X, so
f−1(V ) is open in X. Therefore f is continuous.

33. Check any of the properties f−1(∪Aα) = ∪f−1(Aα), f−1(∩Aα) = ∩f−1(Aα), and
f(∪Aα) = ∪f(Aα) that are not clear to you. Give a counterexample to f(A ∩ B) =
f(A) ∩ f(B).

One counterexample in R is A = [0, 2π], B = [4π, 6π], and g(x) = sin(x), so g(A)∩g(B) =
[−1, 1]∩ [−1, 1] = [−1, 1], but g(A∩B) = g(∅) = ∅. After finding a counterexample, did you
go on to find and prove the strongest general statement: f(A ∩B) ⊆ f(A) ∩ f(B)?

34. Complete the proof that if f : (R,S) → (R,L) is continuous, then f is constant by
completing Case II (assume that x1 < x2 and f(x1) > f(x2) and reach a contradic-
tion. Do it analogously to our method for Case I but using the greatest lower bound
property— every nonempty set of real numbers that has a lower bound has a greatest
lower bound. (There is also a simple trick for deducing Case II from Case I, but the
point here is to practice this type of argument. If you want, try to also find the simple
trick method.)

Suppose for contradiction that x1 < x2 and f(x1) > f(x2). Let S = {x ∈ [x1, x2] | f(x) <
f(x1)}. Since S contains x2, it is nonempty and bounded below, so it has a greatest lower
bound L.

Suppose first that f(L) ≥ f(x1). Then L ∈ f−1([f(x1),∞)), an open set in (R,S), so
there exists ε > 0 such that (L − ε, L + ε) ⊆ f−1([f(x1),∞)), so (L − ε, L + ε) ∩ S = ∅.
Also (−∞, L) ∩ S = ∅, since L is a lower bound for S. So L + ε is a lower bound for S,
contradicting the fact that L is the greatest lower bound.

Suppose now that f(L) < f(x1). Then L ∈ f−1((−∞, f(x1))), an open set in (R,S), so
there exists ε > 0 such that (L− ε, L+ ε) ⊆ f−1((−∞, f(x1))). But then, (L− ε, L+ ε) ⊆ S
and hence L− ε/2 ∈ S, contradicting the fact that L is a lower bound for S.

Here is the simple trick: Suppose for contradiction that x1 < x2 and f(x1) > f(x2).
Let g : (R,S) → (R,S) be g(x) = −x, a continuous function. Since f is continuous, so is
k = f ◦ g : (R,S) → (R,L). Now −x2 < −x1, and k(−x2) = f(x2) < f(x1) = k(−x1). By
Case I, this is impossible.


