Math 4853 homework solutions (version of February 12, 2010)

1. Let \(f: \mathbb{R} \to \mathbb{R} \) be the function defined by \(f(x) = x^2 \). Prove (directly from the definition) that \(f \) is continuous.

Fix \(x_0 \), and suppose for now that \(x_0 \neq 0 \). Note first that if \(|x - x_0| < |x_0| \), then \(|x| = |x - x_0 + x_0| \leq |x - x_0| + |x_0| < |x_0| + |x_0| = 2|x_0| \). Now, given \(\epsilon > 0 \), put \(\delta = \min\{|x_0|, \epsilon/(3|x_0|)\} \); since \(x_0 \neq 0 \) and \(\delta > 0 \).

Then, if \(|x - x_0| < \delta \), we have

\[
|x^2 - x_0^2| = |x + x_0||x - x_0| < 3|x_0|\epsilon/(3|x_0|) = \epsilon .
\]

Suppose now that \(x_0 = 0 \). Given \(\epsilon > 0 \), put \(\delta = \sqrt{\epsilon} \). If \(|x - 0| < \delta \), then \(|x^2 - 0^2| = x^2 < (\sqrt{\epsilon})^2 = \epsilon \).

2. Let \(f: \mathbb{R} \to \mathbb{R} \) be the function defined as follows.

\[f(x) = \begin{cases}
(q - 1)/q & \text{x is rational and x = \pm \frac{p}{q} in lowest terms with } p \geq 0 \text{ and } q > 0 \\
1 & \text{x is irrational}
\end{cases} \]

Prove (directly from the definition) that if \(x \) is irrational, then \(f \) is continuous at \(x \).

Given \(\epsilon \), choose a positive integer \(N \) with \(1/N < \epsilon \). Let \(S \) be the set of rational numbers in the interval \((x - 1, x + 1) \) with the following property:

If \(r_i \) is written as \(p_i/q_i \) with \(p_i \) and \(q_i \) integers in lowest terms, with \(q_i > 0 \), then \(q_i \leq N \).

We note that \(S \) is nonempty, since there is at least one integer in the interval \((x - 1, x + 1) \) for which the denominator is 1, and \(S \) is finite, since the interval \((x - 1, x + 1) \) has finite length. So we can write \(S = \{r_1, \ldots, r_k\} \).

Each \(|r_i - x| > 0 \), since \(x \) is irrational, so the number \(S_{min} = \min\{|r_i - x|\}_{r_i \in S} \) is positive. Put \(\delta = \min\{S_{min}, 1\} \).

Case I: \(z \) is irrational

In this case \(|f(z) - f(x)| = |1 - 1| = 0 < \epsilon \).

Case II: \(z \) is rational

Since \(|z - x| < \delta \leq 1 \), \(z \in (x - \delta, x + \delta) \), but since \(|z - x| < \delta \), \(z \) cannot equal any \(r_i \). So \(z = \frac{p}{q} \) in lowest terms with \(q > N \). Therefore \(|f(z) - f(x)| = |(q - 1)/q - 1| = 1/q < 1/N < \epsilon \).

3. Let \(f: \mathbb{R} \to \mathbb{R} \) be the function defined as follows.

\[f(x) = \begin{cases}
1 & x \in \mathbb{Q} \\
0 & x \notin \mathbb{Q}
\end{cases} \]

[where \(\mathbb{Q} \) denotes the set of rational numbers] Use proof by contradiction to prove that \(f \) is not continuous at any \(x_0 \).
Fix x_0 and suppose for contradiction that f is continuous at x_0. Then there exists $\delta > 0$ such that if $|x - x_0| < \delta$, then $|f(x) - f(x_0)| < 1$.

Case I: x_0 is rational.

Choose an irrational x in the interval $(x_0 - \delta, x_0 + \delta)$. Then $|x - x_0| < \delta$, but $|f(x) - f(x_0)| = |0 - 1| = 1$, a contradiction.

Case II: x_0 is irrational.

Choose a rational x in the interval $(x_0 - \delta, x_0 + \delta)$. Then $|x - x_0| < \delta$, but $|f(x) - f(x_0)| = |1 - 0| = 1$, a contradiction.

4. Let $f : \mathbb{R} \to \mathbb{R}$ be the function defined as follows.

\[
 f(x) = \begin{cases}
 1/q & x \text{ is rational and } x = p/q \text{ in lowest terms with } q > 0 \\
 0 & x \text{ is irrational}
 \end{cases}
\]

Use proof by contradiction to prove that if x is rational, then f is not continuous at x.

Fix a rational number x_0 and suppose for contradiction that f is continuous at x_0. Write $x_0 = p/q$ in lowest terms with $q > 0$. Then there exists $\delta > 0$ such that if $|x - x_0| < \delta$, then $|f(x) - f(x_0)| < 1/q$. Choose an irrational x in the interval $(x_0 - \delta, x_0 + \delta)$. Then $|x - x_0| < \delta$, but $|f(x) - f(x_0)| = |0 - 1/q| = 1/q$, a contradiction.