Math 4853 homework

62. Prove that every uncountable subset of \(\mathbb{R} \) has a limit point in \(\mathbb{R} \). (Let \(A \) be an uncountable subset of \(\mathbb{R} \), and for \(n \in \mathbb{Z} \) put \(A_n = A \cap [n, n+1] \).)

63. Let \(\{ x_n \} \) be a sequence in a metric space \(X \). Prove that if \(x_n \to x \), then \(\{ x_n \} \) is Cauchy.

64. Give \(\mathbb{R}^k \) the metric \(d(x, y) = \| x - y \| \). Let \(\{ z_n \} \) be a sequence of points in \(\mathbb{R}^k \), written in coordinates as \(z_n = (z^1_n, z^2_n, \ldots, z^k_n) \). Prove that \(\{ z_n \} \) is Cauchy if and only if each \(\{ z^i_n \} \) is a Cauchy sequence in \((\mathbb{R}, |x - y|) \).

65. Let \(\{ f_n \} \) be a sequence of functions in \(C([0, 1], \mathbb{R}^k) \) (the set of continuous functions from \([0, 1]\) to \(\mathbb{R}^k \)). Prove that if \(\{ f_n \} \to f \) uniformly, then \(\{ f_n \} \to f \) pointwise.

66. Let \(f_n : [0, 1] \to \mathbb{R} \) be \(f_n(x) = x^n \), and let \(f : [0, 1] \to \mathbb{R} \) be defined by \(f(x) = 0 \) if \(x < 1 \) and \(f(1) = 1 \). Using the definitions, prove that \(f_n \to f \) pointwise but not uniformly.