
Mathematics 6823-001
Midterm Examination
March 12, 2009

Name (please print)

Instructions: Insofar as possible, give brief, clear answers. Use major theorems when possible.

I.
(6)

Let 0 → A
f→ B

g→ C → 0 be an exact sequence of abelian groups, and let G be an abelian group. Give an
example showing that the sequence 0 → Hom(C,G)

g∗→ Hom(B,G)
f∗
→ Hom(A,G) → 0 need not be exact.

What positive statement can be made?

Choose m > 1 and consider 0 → Z α→ Z → Z /m → 0, where α(k) = mk. Now Hom(Z, Z) ∼= Z gener-
ated by φ : 1 7→ 1, and α∗(φ) : 1 7→ m so α∗(φ) = mφ. Therefore the sequence 0 → Hom(Z /m, Z) →
Hom(Z, Z) α∗

→ Hom(Z, Z) → 0 becomes 0 → 0 → Z α→ Z → 0, which is not exact.

It is true, however, that 0 → Hom(C,G)
g∗→ Hom(B,G)

f∗
→ Hom(A,G) is exact. And the Hom sequence

is exact if the original exact sequence was split exact.

II.
(6)

Let X be obtained from the 2-sphere by identifying three points of the equator. Compute the homology
groups of X. (Note that X has a cell structure with one 0-cell, three 1-cells, and two 2-cells.)

Form the cellular chain complex

0 → Z⊕Z ∂2→ Z⊕Z⊕Z ∂1→ Z → 0 .

with the obvious bases consisting of the cells. The matrix of ∂2 is

1 1
1 1
1 1

, which is equivalent to1 0
0 0
0 0

, so H2(X) = ker(∂2) ∼= Z. Since there is only one 0-cell, ∂1 is the zero homomorphism, so

H1(X) = Z⊕Z⊕Z / im(∂2) ∼= Z⊕Z, and H0(X) = Z / im(∂1) = Z.
Alternatively, one can put A equal to the subset consisting of the three points and use the fact that
Hn(S2, A) ∼= H̃n(S2/A). The long exact sequence becomes

H2(A) = 0 → H2(S2) → H2(S2/A) → H1(A) → H1(S2) → H1(S2/A) → H̃0(A) → 0 = H̃0(S2)

Since H1(A) = 0, we have H2(S2/A) ∼= H2(S2) ∼= Z. Since H1(S2) = 0, we have H1(S2/A) ∼= H̃0(A) ∼=
Z⊕Z, and H0(S2/A) ∼= Z since S2 and hence S2/A is path connected.

III.
(6)

Let X be a finite CW-complex, and let A and B be subcomplexes of X with X = A∪B. Explain why the
Euler characteristic satisfies χ(X) = χ(A) + χ(B)− χ(A ∩B).

χ(X) is the alternating sum
∑

(−1)ixi, where xi is the number of i-cells of X. Similarly, χ(A) =∑
(−1)iai and χ(B) =

∑
(−1)ibi. In the sum χ(A) + χ(B), all the cells of X are counted with the

correct sign for the expression for χ(X), but the cells in A ∩B are counted twice. Correcting this by
subtracting χ(A ∩B) gives the formula.

IV.
(6)

Let C be a chain complex and let [ϕ] ∈ Hn(C;G).

(a) Use the fact that ϕ is a cocycle to show that ϕ induces a homomorphism ϕ|Zn : Hn(C) → G.

The cocycle condition 0 = δnϕ = ϕ∂n+1 says that 0 = ϕ(∂n+1(Cn+1)) = ϕ(Bn), so ϕ|Zn : Zn → G
induces ϕ|Zn : Zn/Bn = Hn(C) → G.

(b) Show that if ϕ is a coboundary, then ϕ is the zero homomorphism. That is, sending the cohomology class
[ϕ] to ϕ is a well-defined homomorphism h : Hn(C;G) → Hom(Hn(C), G).

If ϕ = δφ = φ ◦ ∂n, then ϕ|Zn(Zn) = φ ◦ ∂n(Zn) = φ(0) = 0.
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V.
(6)

Let H be an abelian group (or more generally an R-module over a ring R). Define a free resolution of H.
Suppose that F and F ′ are free resolutions of H and H ′, and α : H → H ′ is a homomorphism. Tell what
is obtained from α, and how well-defined it is.

A free resolution of H is an exact sequence · · · → F3
f3→ F2

f2→ F1
f0→ H → 0, where each Fi is a free

R-module.

From α one can always build a chain map

· · · −→ F2
f2−−−−→ F1

f1−−−−→ F0
f0−−−−→ H −−−−→ 0yα2

yα1

yα0

yα

· · · −→ F ′
2

f ′
2−−−−→ F ′

1

f ′
1−−−−→ F ′

0

f ′
0−−−−→ H ′ −−−−→ 0

which is well-defined up to chain homotopy.

VI.
(8)

State the Excision Theorem (either of the two forms is sufficient). Use it to calculate Hn(U,U − x), where
U is an open subset of Rn and x ∈ U .

For the statements, check the text. Given x ∈ U , choose a small closed n-ball B in U with x in
the interior of B. Since U −B ⊂ U − x, we have by excision that the inclusion (B,B − x) =
(U − U − B,U − x − (U − B)) → (U,U − x) induces an isomorphism on homology groups. So for
each k, we have Hk(U,U − x) ∼= Hk(B,B − x) ∼= Hk(B, ∂B), since B − x deformation retracts to
∂B. Since all reduced homology groups of B are 0, the long exact sequence gives an isomorphism
Hk(B, ∂B) ∼= H̃k−1(∂B) ∼= H̃k−1(Sn−1), which is Z if k = n and 0 otherwise.

I use the previous argument because it actually works in any manifold. But a nicer way to do this
particular case is to take Z = Rn−U and use the excision (U,U − x) → (Rn, Rn−x). Then one has
Hk(U,U − x) ∼= Hk(Rn, Rn−x) ∼= H̃k−1(Rn−x) ∼= H̃k−1(Sn−1) which is Z if k = n and 0 otherwise.

VII.
(4)

Construct a surjective map of degree 0 from Sn to Sn.

Regarding Sn as the standard subset in Rn+1, the projection p of Sn to the first n coordinates carries
Sn onto Dn ⊂ Rn. Following this by the quotient map q : Dn → Dn/∂Dn = Sn defines the surjection
qp : Sn → Sn. It has degree 0 since (qp)∗ factors as Hn(Sn)

p∗→ Hn(Dn)
q∗→ Hn(Sn), and Hn(Dn) = 0.

VIII.
(8)

Define the terms category, covariant functor, and contravariant functor. Give an elementary (undergrad-
uate) example of a contravariant functor.

A category C consists of a set of objects Obj(C) and, for each X, Y ∈ C, a set of morphisms Mor(X, Y ),
such that Mor(X, X) contains an identity morphisms ιX . Moreover, for any X, Y, Z ∈ C, there is
a composition function ◦ : Mor(Y, Z) × Mor(X, Y ) → Mor(X, Z) such that for f ∈ Mor(X, Y ) and
g ∈ Mor(Y, Z), (f ◦ g) ◦ h = f ◦ (g ◦ h), f ◦ ιX = f , and ιY ◦ f = f .

A covariant functor F : C → D assigns to each object X ∈ Obj(C) an object F (X) ∈ Obj(D)
and to each f ∈ Mor(X, Y ) a morphism F (f) ∈ Mor(F (X), F (Y )) such that F (ιX) = ιF (X) and
F (g ◦ f) = F (g) ◦ F (f). A contravariant functor is the same, except that F (g ◦ f) = F (f) ◦ F (g).

An elementary example of a contravariant functor is taking both categories to be the category of real
vector spaces and linear transformations, and putting F (V ) equal to the dual space Hom(V, R) and,
for f ∈ Hom(V,W ), F (f) equal to the dual linear transformation f∗ : Hom(W, R) → Hom(V, R) given
by f∗(φ) = φ ◦ f .


