Mathematics 6823-001 Name (please print)
Final Examination

May 13, 2009
Instructions: Insofar as possible, give brief, clear answers. Use major theorems when possible. Assume that
homology and cohomology are with Z coefficients unless otherwise indicated.

I Let C be a chain complex and let [p] € H"(C; G).
6 -
8&) Use the fact that ¢ is a cocycle to show that ¢ induces a homomorphism ¢|z, : H,(C) — G.

The cocycle condition 0 = 6,0 = @On41 says that 0 = ©(0n+1(Cnt1)) = ©(Bn), so ©lz,: Zn — G
induces ¢|z, : Z,/B, = H,(C) — G.

(b) Show that if ¢ is a coboundary, then P is the zero homomorphism. That is, sending the cohomology class
[¢] to @ is a well-defined homomorphism h: H"(C; G) — Hom(H,(C), G).

If o = ¢ = ¢ oy, then ¢|z,(Z,) = ¢ o 0n(Zy) = $(0) = 0.

II. Let Y be the space obtained from the 3-sphere S by attaching a 4-cell using a map of degree 6. It has a
(9) CW-complex structure with one cell in each of the dimensions 0, 3, and 4.

(a) Use cellular homology to calculate the homology of Y with Z coefficients.

The cellular chain complex of Y terminates with
O—>Z%>Z—>O—>O—>Z—>O

Clearly we have Hy(Y) = Z. Since 04 is multiplication by 6, its kernel Hy4(Y') is 0 and its cokernel
Hs(Y)is Z /6.

(b) Use the Universal Coefficient Theorem to calculate the cohomology of Y with Z coefficients. You may use
the fact that Ext(Z /m,G) = G/mG, so Ext(Z /m,Z) = Z /m.

From

0 — Ext(H_1(Y),Z) — H°(Y) — Hom(Hy(Y),Z) — 0
we have H*(Y) = Hom(Ho(Y),Z) = Hom(Z,Z) = Z. From

0 — Ext(Ho(Y),Z) — H3(Y) — Hom(H3(Y),Z) — 0
we have H3(Y) = Hom(H3(Y),Z) = Hom(Z /6,7Z) = 0. From

0 — Ext(H3(Y),Z) — HYY) — Hom(H(Y),Z) — 0
we have H*(Y) = Ext(H3(Y),Z) = Ext(Z /6,Z) = Z /6.

(c) Use the Universal Coefficient Theorem to calculate the cohomology of Y with Z /3 coefficients. You may use
the fact that Ext(Z /m,G) = G/mG, so Ext(Z /m,Z /n) =2 Z | gcd(m,n).

From

0 — Ext(H_1(Y),Z/3) — H*(Y;Z /3) — Hom(Hy(Y),Z /3) — 0
we have HO(Y;Z /3) = Hom(Ho(Y), Z /3) = Hom(Z, Z /3) = Z /3. From

0 — Ext(Hy(Y),Z /3) — H3(Y;Z /3) — Hom(H3(Y),Z /3) — 0
we have H3(Y;Z /3) = Hom(H3(Y),Z /3) =< Hom(Z /6,7 /3) = Z /3. From

0 — Ext(H3(Y),Z/3) — HYY;Z /3) — Hom(H4(Y),Z /3) — 0
we have H4(Y;7Z /3) = Ext(Hs(Y),Z /3) = Ext(Z /6,7 /3) = Z /3.
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III.  Give an example of a short exact sequence 0 — A = B LA C — 0 of abelian groups that does not split.
(6) Give an example of a short exact sequence of nonabelian groups so that § has a section, but B is not the
direct product of A and C.

The short exact sequence 0 — Z > Z LA Z /2 — 0, where « is multiplication by 2, does not split.
The reason is that Z is torsion-free and therefore the only homomorphism s from Z /2 to Z is the zero
homomorphism. So one cannot have (3s equal to the identity on Z /2.

The short exact sequence 0 — C3 — X3 LA Cy — 0 (where X3 is the permutation group on three
letters) has a section s: Co — 33 given by sending the generator to any transposition. But 3 is not
isomorphic to the direct sum Cs @ Cf, since the latter is abelian.

IV. Regarding the Klein bottle K as two Mobius bands glued together along their boundaries, use the Mayer-
(8) Vietoris sequence to calculate the homology groups of K.

Let A and B be the two Mobius bands, which intersect in their common boundary circle C'. Since K
is connected, Hy(K) = Z. For its other homology groups, we use the reduced Mayer-Vietoris sequence

0 — Hy(K) — Hy(C) > Hy(A) @ Hi(B) — Hi(K) — 0
Since A and B are homotopy equivalent to circles, this becomes
0— Hy(K) = Z 2267 — Hi(K)—0
The generator of Hy(C) goes to twice a generator of Hi(A) under inclusion, and similarly for H;(B),

so we can write ®(1) = (2,—2). Therefore ® is injective, showing that Hy(K) = 0, and H;(K) =
ZSL[{(2,-2)) =2 ZSZ /2, where the generators of the quotient are (1,0) and (1, —1).

V. Give the definitions of ¢ U, where ¢ € C*(X; Q) and o € C*(X;G), and of o N ¢, where o is a singular
(6) (k + £)-simplex in X.

Writing o: A* — X where AP = [vg, ..., vgpye], we have
PUP(0) =2y, .. o) YNy, v

and

oy = ‘P(U’[vo,...,vk]) ’ U|[Uk,---avkr+£]
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VI.  Use Poincaré Duality to show that if M is a closed odd-dimensional manifold, then the Euler characteristic
(6) of M is 0. You may use the fact that H'(M; F) = Hom(H;(M; F), F) when F is a field, and also the fact
that the H;(M; F') are finite-dimensional.

We take R = Z /2, so that M is Z /2-orientable, each H;(M) is a finite-dimensional Z /2-vector
space, and H*(M;Z /2) = Hom(Hy(M;Z/2),7 /2), so dim(H*(M;Z /2)) = dim(Hy(M;Z /2)). By
Poincaré Duality, H*(M;Z /2) = H,,_(M;7Z /2) and hence dim(Hy(M;7Z /2)) = dim(H*(M;7Z /2)) =
dim(H,,—x(M;Z /2)). So we have

n (n—1)/2
X(M) = (1) dim(Hy(M Z/2)) = Y (=1)' dim(H;(M;Z /2)) + (=1)" " dim(H,_i(M; Z /2))
k=0 k=0
(n—1)/2 ' . (n—1)/2 ‘
= > () + ()" dim(H; (M; Z /2)) = Y (=1 (1+ (=1)") dim(H;(M; Z /2)) =0 .
k=0 k=0

VII. Recall that if X and Y are CW-complexes and each H¥(Y;R) is free and finitely generated (as an R-
(7) module), then H*(X x Y;R) =2 H*(X;R) ® H*(Y; R) as graded rings. Take as known the fact that for
n > 1, H*(S") = H°(S") ® H"(S"), with H°(S™) = Z generated by 1, H"(S") = Z generated by an

element o, and o, U a,, = 0.

(a) Use this theorem to write down the cohomology ring H*(S™ x S™).

Denote the n-dimensional generators of the two factors by «;,, and 5,,. The nonzero cohomology groups
are

HO(S™ x S™) = 7 generated by 1U1 =1,

H™(S™ x S™) 2 Z &7 generated by ay, U1l = oy, and 1 U G, = G,

and H?"(S" x S™) = Z generated by a;, U 3.

(b) Tell a ring isomorphism (not a graded ring isomorphism) from H*(S? x S?) to H*(S* x S*). You do not
need to verify that it is is an isomorphism, just write it down.

Send as to ay and P2 to (4.
(c) Show that H*(S? x S?) and H*(S3 x S3) are not isomorphic as rings.

All nonzero elements of H*(S? x S?) occur in even dimensions, so any two commute. But in H*(S3x 53),
a3U P = —P3Uas.

VIII. Let U be an open subset of an R-orientable n-manifold M, and let {yu,}.en be an R-orientation of M.
(6) Verify that {pz}zev is an R-orientation of U (i. e. is locally consistent for U).

Let x € U. Since {pg}renr is locally consistent, there is an open n-ball B in M, containing z, and
an element up € H,(M, M — B; R) such that H,(M,M — B; R) — H,(M,M — y; R) carries upg to
py for every y € B. Since U is open, there is an open n-ball B’ in U with z € B’ and B’ C B.
Since M — B’ deformation retracts to M — B, inclusion induces an isomorphism H,, (M, M — B; R) =
H,(M,M — B’;R), which sends pp to some element pp/. For each y € B, the inclusions induce
isomorphisms H,,(M,M — B;R) = H,(M,M — B;R) = H,(M,M — y;R), and pp goes to u,,
showing that ppr goes to p,. Therefore {ji,}2cr is also locally consistent.



Let M be a closed connected R-orientable m-manifold. What is a fundamental class for M (with R
coefficients)? State Poincaré Duality for this closed M in terms of a fundamental class.

A fundamental class [M] is a generator of H,(M;R) = R. Poincaré Duality says that the R-
homomorphism Dy;: H¥(M; R) — H,,_(M; R) given by Dys(a) = [M] N« is an isomorphism.

Let f: (I",0I"™) — (X, x) represent an element of m, (X, zo), and let w: (I,01) — (X, zo) be a loop based
at xg. Draw a picture and use it to describe a function wf: (I"™,0I") — (X, xo) that represents the result
[w] - [f] of the element [w] € 71 (X, x0) acting on the element [f] € m,(X, zp). Do the same if one is thinking
of f as a map from (S", sp) — (X, x0).

(For the I" case, draw the standard picture where f is a smaller square inside a larger one, and each
radial line between the boundaries of the two squares is sent to X by mapping it around the loop
w. For the sphere viewpoint, draw the “balloon” picture and a partial quotient map from S™ to the
balloon, with the balloon part then mapping by f and the “string” mapping around w.)

Let M be a simply-connected n-manifold. Show that M is orientable. (Hint: what do we know about the
covering spaces of a simply-connected space?)

M cannot have a connected 2-fold covering, since then (M) would have to contain a subgroup of
index 2. Therefore the 2-fold orientation covering of M has two components, so M is orientable.



