
Mathematics 6823-001
Final Examination
May 13, 2009

Name (please print)

Instructions: Insofar as possible, give brief, clear answers. Use major theorems when possible. Assume that
homology and cohomology are with Z coefficients unless otherwise indicated.

I.
(6)

Let C be a chain complex and let [ϕ] ∈ Hn(C;G).

(a) Use the fact that ϕ is a cocycle to show that ϕ induces a homomorphism ϕ|Zn : Hn(C) → G.

The cocycle condition 0 = δnϕ = ϕ∂n+1 says that 0 = ϕ(∂n+1(Cn+1)) = ϕ(Bn), so ϕ|Zn : Zn → G
induces ϕ|Zn : Zn/Bn = Hn(C) → G.

(b) Show that if ϕ is a coboundary, then ϕ is the zero homomorphism. That is, sending the cohomology class
[ϕ] to ϕ is a well-defined homomorphism h : Hn(C;G) → Hom(Hn(C), G).

If ϕ = δφ = φ ◦ ∂n, then ϕ|Zn(Zn) = φ ◦ ∂n(Zn) = φ(0) = 0.

II.
(9)

Let Y be the space obtained from the 3-sphere S3 by attaching a 4-cell using a map of degree 6. It has a
CW-complex structure with one cell in each of the dimensions 0, 3, and 4.

(a) Use cellular homology to calculate the homology of Y with Z coefficients.

The cellular chain complex of Y terminates with

0 → Z ∂4→ Z → 0 → 0 → Z → 0

Clearly we have H0(Y ) ∼= Z. Since ∂4 is multiplication by 6, its kernel H4(Y ) is 0 and its cokernel
H3(Y ) is Z /6.

(b) Use the Universal Coefficient Theorem to calculate the cohomology of Y with Z coefficients. You may use
the fact that Ext(Z /m,G) ∼= G/mG, so Ext(Z /m,Z) ∼= Z /m.

From
0 → Ext(H−1(Y ),Z) → H0(Y ) → Hom(H0(Y ),Z) → 0

we have H0(Y ) ∼= Hom(H0(Y ),Z) ∼= Hom(Z,Z) ∼= Z. From

0 → Ext(H2(Y ),Z) → H3(Y ) → Hom(H3(Y ),Z) → 0

we have H3(Y ) ∼= Hom(H3(Y ),Z) ∼= Hom(Z /6,Z) ∼= 0. From

0 → Ext(H3(Y ),Z) → H4(Y ) → Hom(H4(Y ),Z) → 0

we have H4(Y ) ∼= Ext(H3(Y ),Z) ∼= Ext(Z /6,Z) ∼= Z /6.

(c) Use the Universal Coefficient Theorem to calculate the cohomology of Y with Z /3 coefficients. You may use
the fact that Ext(Z /m,G) ∼= G/mG, so Ext(Z /m,Z /n) ∼= Z / gcd(m,n).

From
0 → Ext(H−1(Y ),Z /3) → H0(Y ; Z /3) → Hom(H0(Y ),Z /3) → 0

we have H0(Y ; Z /3) ∼= Hom(H0(Y ),Z /3) ∼= Hom(Z,Z /3) ∼= Z /3. From

0 → Ext(H2(Y ),Z /3) → H3(Y ; Z /3) → Hom(H3(Y ),Z /3) → 0

we have H3(Y ; Z /3) ∼= Hom(H3(Y ),Z /3) ∼= Hom(Z /6,Z /3) ∼= Z /3. From

0 → Ext(H3(Y ),Z /3) → H4(Y ; Z /3) → Hom(H4(Y ),Z /3) → 0

we have H4(Y ; Z /3) ∼= Ext(H3(Y ),Z /3) ∼= Ext(Z /6,Z /3) ∼= Z /3.
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III.
(6)

Give an example of a short exact sequence 0 → A
α→ B

β→ C → 0 of abelian groups that does not split.
Give an example of a short exact sequence of nonabelian groups so that β has a section, but B is not the
direct product of A and C.

The short exact sequence 0 → Z α→ Z β→ Z /2 → 0, where α is multiplication by 2, does not split.
The reason is that Z is torsion-free and therefore the only homomorphism s from Z /2 to Z is the zero
homomorphism. So one cannot have βs equal to the identity on Z /2.

The short exact sequence 0 → C3
α→ Σ3

β→ C2 → 0 (where Σ3 is the permutation group on three
letters) has a section s : C2 → Σ3 given by sending the generator to any transposition. But Σ3 is not
isomorphic to the direct sum C2 ⊕ C3, since the latter is abelian.

IV.
(8)

Regarding the Klein bottle K as two Möbius bands glued together along their boundaries, use the Mayer-
Vietoris sequence to calculate the homology groups of K.

Let A and B be the two Möbius bands, which intersect in their common boundary circle C. Since K
is connected, H0(K) ∼= Z. For its other homology groups, we use the reduced Mayer-Vietoris sequence

0 → H2(K) → H1(C) Φ→ H1(A)⊕H1(B) → H1(K) → 0

Since A and B are homotopy equivalent to circles, this becomes

0 → H2(K) → Z Φ→ Z⊕Z → H1(K) → 0

The generator of H1(C) goes to twice a generator of H1(A) under inclusion, and similarly for H1(B),
so we can write Φ(1) = (2,−2). Therefore Φ is injective, showing that H2(K) = 0, and H1(K) ∼=
Z⊕Z /〈(2,−2)〉 ∼= Z⊕Z /2, where the generators of the quotient are (1, 0) and (1,−1).

V.
(6)

Give the definitions of ϕ ∪ ψ, where ϕ ∈ Ck(X;G) and ψ ∈ C`(X;G), and of σ ∩ ϕ, where σ is a singular
(k + `)-simplex in X.

Writing σ : ∆k+` → X, where ∆k+` = [v0, . . . , vk+`], we have

ϕ ∪ ψ(σ) = ϕ(σ|[v0, . . . , vk]) · ψ(σ|[vk, . . . , vk+`])

and
σ ∩ ϕ = ϕ(σ|[v0, . . . , vk]) · σ|[vk, . . . , vk+`]
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VI.
(6)

Use Poincaré Duality to show that if M is a closed odd-dimensional manifold, then the Euler characteristic
of M is 0. You may use the fact that H i(M ;F ) ∼= Hom(Hi(M ;F ), F ) when F is a field, and also the fact
that the Hi(M ;F ) are finite-dimensional.

We take R = Z /2, so that M is Z /2-orientable, each Hi(M) is a finite-dimensional Z /2-vector
space, and Hk(M ; Z /2) ∼= Hom(Hk(M ; Z /2),Z /2), so dim(Hk(M ; Z /2)) = dim(Hk(M ; Z /2)). By
Poincaré Duality, Hk(M ; Z /2) ∼= Hn−k(M ; Z /2) and hence dim(Hk(M ; Z /2)) = dim(Hk(M ; Z /2)) =
dim(Hn−k(M ; Z /2)). So we have

χ(M) =
n∑

k=0

(−1)i dim(Hi(M Z /2)) =
(n−1)/2∑

k=0

(−1)i dim(Hi(M ; Z /2)) + (−1)n−i dim(Hn−i(M ; Z /2))

=
(n−1)/2∑

k=0

((−1)i + (−1)n−i) dim(Hi(M ; Z /2)) =
(n−1)/2∑

k=0

(−1)i(1 + (−1)n) dim(Hi(M ; Z /2)) = 0 .

VII.
(7)

Recall that if X and Y are CW -complexes and each Hk(Y ;R) is free and finitely generated (as an R-
module), then H∗(X × Y ;R) ∼= H∗(X;R) ⊗ H∗(Y ;R) as graded rings. Take as known the fact that for
n ≥ 1, H∗(Sn) ∼= H0(Sn) ⊕ Hn(Sn), with H0(Sn) ∼= Z generated by 1, Hn(Sn) ∼= Z generated by an
element αn, and αn ∪ αn = 0.

(a) Use this theorem to write down the cohomology ring H∗(Sn × Sn).

Denote the n-dimensional generators of the two factors by αn and βn. The nonzero cohomology groups
are
H0(Sn × Sn) ∼= Z generated by 1 ∪ 1 = 1,
Hn(Sn × Sn) ∼= Z⊕Z generated by αn ∪ 1 = αn and 1 ∪ βn = βn,
and H2n(Sn × Sn) ∼= Z generated by αn ∪ βn.

(b) Tell a ring isomorphism (not a graded ring isomorphism) from H∗(S2 × S2) to H∗(S4 × S4). You do not
need to verify that it is is an isomorphism, just write it down.

Send α2 to α4 and β2 to β4.

(c) Show that H∗(S2 × S2) and H∗(S3 × S3) are not isomorphic as rings.

All nonzero elements of H∗(S2×S2) occur in even dimensions, so any two commute. But in H∗(S3×S3),
α3 ∪ β3 = −β3 ∪ α3.

VIII.
(6)

Let U be an open subset of an R-orientable n-manifold M , and let {µx}x∈M be an R-orientation of M .
Verify that {µx}x∈U is an R-orientation of U (i. e. is locally consistent for U).

Let x ∈ U . Since {µx}x∈M is locally consistent, there is an open n-ball B in M , containing x, and
an element µB ∈ Hn(M,M − B;R) such that Hn(M,M − B;R) → Hn(M,M − y;R) carries µB to
µy for every y ∈ B. Since U is open, there is an open n-ball B′ in U with x ∈ B′ and B′ ⊂ B.
Since M −B′ deformation retracts to M −B, inclusion induces an isomorphism Hn(M,M −B;R) ∼=
Hn(M,M − B′;R), which sends µB to some element µB′ . For each y ∈ B, the inclusions induce
isomorphisms Hn(M,M − B;R) ∼= Hn(M,M − B′;R) ∼= Hn(M,M − y;R), and µB goes to µy,
showing that µB′ goes to µy. Therefore {µx}x∈U is also locally consistent.



Page 4

IX.
(6)

Let M be a closed connected R-orientable n-manifold. What is a fundamental class for M (with R
coefficients)? State Poincaré Duality for this closed M in terms of a fundamental class.

A fundamental class [M ] is a generator of Hn(M ;R) ∼= R. Poincaré Duality says that the R-
homomorphism DM : Hk(M ;R) → Hn−k(M ;R) given by DM (α) = [M ] ∩ α is an isomorphism.

X.
(6)

Let f : (In, ∂In) → (X,x0) represent an element of πn(X,x0), and let ω : (I, ∂I) → (X,x0) be a loop based
at x0. Draw a picture and use it to describe a function ωf : (In, ∂In) → (X,x0) that represents the result
[ω] · [f ] of the element [ω] ∈ π1(X,x0) acting on the element [f ] ∈ πn(X,x0). Do the same if one is thinking
of f as a map from (Sn, s0) → (X,x0).

(For the In case, draw the standard picture where f is a smaller square inside a larger one, and each
radial line between the boundaries of the two squares is sent to X by mapping it around the loop
ω. For the sphere viewpoint, draw the “balloon” picture and a partial quotient map from Sn to the
balloon, with the balloon part then mapping by f and the “string” mapping around ω.)

XI.
(6)

Let M be a simply-connected n-manifold. Show that M is orientable. (Hint: what do we know about the
covering spaces of a simply-connected space?)

M cannot have a connected 2-fold covering, since then π1(M) would have to contain a subgroup of
index 2. Therefore the 2-fold orientation covering of M has two components, so M is orientable.


