Mathematics 3333-001	Name (please print)
Examination I	
February 19, 2009	

Instructions: Give concise answers, but clearly indicate your reasoning.

Each of the following matrices is the augmented matrix of a system of linear equations, and is in row
 (12) echelon form or reduced row echelon form. For each matrix, write a general expression for the solutions of the corresponding linear system, or else explain why the system is inconsistent. You may wish to simplify the matrix further before finding the solution.

 $x_2 = r, x_3 = s, x_5 = t,$ $x_4 = -x_5 + 5 = 5 - t,$ $x_1 = -x_2 + 7 = 7 - r,$ so the general solution is (7 - r, r, s, 5 - t, t). $1 \ 2 \ 0$ 0 1 1 0 0 0 2. 0 0 0 0 0 0 0 0 0 $x_2 = 1, x_1 = -2x_2 = -2$, so (-2, 1) is the unique solution. 1 2 2 2 2(hint: use row operations to create a lot of zeros before doing back substitution). $0 \ 1 \ 2 \ 2$

Using the row operations $R_1 - R_2 \longrightarrow R_1$, $R_2 - 2R_3 \longrightarrow R_2$, and $R_1 - R_2 \longrightarrow R_1$ (among various possible solutions), we simplify the matrix to

 $\begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 2 & 2 & 2 \\ 0 & 0 & 1 & 2 & 2 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -2 & -2 \\ 0 & 0 & 1 & 2 & 2 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & 0 & 2 & 2 \\ 0 & 1 & 0 & -2 & -2 \\ 0 & 0 & 1 & 2 & 2 \end{bmatrix}.$ We then have $x_4 = r, x_3 = 2 - 2x_4 = 2 - 2r, x_2 = 2x_4 - 2 = 2r - 2$, and $x_1 = 2 - 2x_4 = 2 - 2r$, so the general solution is (2 - 2r, 2r - 2, 2 - 2r, r).

	0	0	0	0	0
4.	0	0	0	0	0
	0	0	0	0	0

The general solution is (r, s, t, u).

II. Simplify the following expressions, assuming that all matrices are n × n for a fixed size n.
(4)

3I + A(3B - 4A^{-1})

$$3I + A(3B - 4A^{-1}) = 3I + A(3B) - A(4A^{-1}) = 3I + 3AB - 4AA^{-1} = 3AB - I$$

2. $(AB^T - BA^T)^T$

 $(AB^T - BA^T)^T = (AB^T)^T - (BA^T)^T = (B^T)^T A^T - (A^T)^T B^T = BA^T - AB^T$ (thus any matrix of the form $AB^T - BA^T$ is skew-symmetric)

- III. Write the following equation involving a linear combination of column vectors as a system of linear equations
- (4) that has the same solutions:

$$x_{1} \begin{bmatrix} 1\\ 2\\ -1 \end{bmatrix} + x_{2} \begin{bmatrix} 0\\ 1\\ 2 \end{bmatrix} + x_{3} \begin{bmatrix} 3\\ 4\\ 5 \end{bmatrix} + x_{4} \begin{bmatrix} 1\\ 3\\ 4 \end{bmatrix} = \begin{bmatrix} 2\\ 5\\ 8 \end{bmatrix}$$
$$x_{1} + 3x_{3} + x_{4} = 2$$
$$2x_{1} + x_{2} + 4x_{3} + 3x_{4} = 5$$
$$-x_{1} + 2x_{2} + 5x_{3} + 4x_{4} = 8$$

IV. (a) Suppose that A_1, A_2, \ldots, A_k are nonsingular $n \times n$ matrices. Explain why the product $A_1 A_2 \cdots A_k$ is (6) nonsingular.

We have $(A_k^{-1}A_{k-1}^{-1}\cdots A_2^{-1}A_1^{-1}) \cdot A_1A_2\cdots A_k = A_k^{-1}A_{k-1}^{-1}\cdots A_2^{-1} \cdot I \cdot A_2\cdots A_k = A_k^{-1}A_{k-1}^{-1}\cdots A_2^{-1} \cdot A_2 \cdots A_k = A_k^{-1}A_{k-1}^{-1}\cdots A_2^{-1} \cdot A_2 \cdot A_k = A_k^{-1}A_{k-1}^{-1}\cdots A_2^{-1}A_1^{-1}$.

(b) Give an example of nonzero 2×2 matrices A, B, and C for which AB = AC but $B \neq C$.

$$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, \text{ but } \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \neq \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}.$$

(c) Show that if A, B, and C are 2×2 matrices with AB = AC, and A is nonsingular, then B = C.

Multiplying both sides of AB = AC by A^{-1} , we would have $A^{-1}AB = A^{-1}AC$, so IB = IC and B = C.

(a) If X_1 and X_2 are solutions, then $X_1 - X_2$ is a solution of the associated homogeneous system AX = 0.

$$A(X_1 - X_2) = AX_1 - AX_2 = B - B = 0.$$

(b) If X_1 and X_2 are solutions, then for any scalars r and s with r + s = 1, $rX_1 + sX_2$ is also a solution.

$$A(rX_1 + sX_2) = A(rX_1) + A(sX_2) = rAX_1 + sAX_2 = rB + sB = (r+s)B = B$$

VI. For each of the following matrix transformations from \mathbb{R}^2 to \mathbb{R}^2 , describe geometrically what the matrix (4) transformation does to the plane.

1.
$$F(X) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} X$$

This sends (x, y) to (y, x), which is reflection across the line y = x.

2.
$$F(X) = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} X$$

This sends (x, y) to (0, y), so each vector is horizontally projected to its "shadow" on the y-axis.

VII. Let A be an $m \times n$ matrix, $A = [a_{ij}]$. Let I be the $n \times n$ identity matrix. By calculating the (i, j) entry of (5) the product AI, show that AI = A.

Denoting the (i, j) entry of a matrix M by $M_{i,j}$, we have

$$(A I)_{i,j} = \sum_{k=1}^{n} A_{i,k} I_{k,j} = A_{i,1} I_{1,j} + A_{i,2} I_{2,j} + \dots + A_{i,j} I_{j,j} + A_{i,j+1} I_{j+1,j} + \dots + A_{i,n} I_{n,j}$$
$$= A_{i,1} \cdot 0 + A_{i,2} \cdot 0 + \dots + A_{i,j-1} \cdot 0 + A_{i,j} \cdot 1 + A_{i,j+1} \cdot 0 + \dots + A_{i,n} \cdot 0 = A_{i,j} ,$$

so AI = A.

VIII. The inverse of a certain 3×3 matrix $A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$ is $A^{-1} = \begin{bmatrix} 1 & 2 & 4 \\ -1 & -1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$. Find all solutions of

the linear system

 $a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = 2$ $a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = 1$ $a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = -1$

The system can be regarded as
$$A\begin{bmatrix} x_1\\ x_2\\ x_3 \end{bmatrix} = \begin{bmatrix} 2\\ 1\\ -1 \end{bmatrix}$$
, so the unique solution is $A^{-1}\begin{bmatrix} 2\\ 1\\ -1 \end{bmatrix} = \begin{bmatrix} 0\\ -3\\ 0 \end{bmatrix}$

IX. For the following system of linear equations involving numbers *a*, *b*, and *c*:

(6)

- 2x 5y + 3z = a3x 8y + 5z = bx 3y + 2z = c
- (a) Find a condition on a, b, and c so that the system is consistent for any choice of values of a, b, and c that satisfy the condition.

Writing the augmented matrix and using Gauss-Jordan elimination, we calculate:

$$\begin{bmatrix} 2 & -5 & 3 & a \\ 3 & -8 & 5 & b \\ 1 & -3 & 2 & c \end{bmatrix} \longrightarrow \begin{bmatrix} 0 & 1 & -1 & a - 2c \\ 0 & 1 & -1 & b - 3c \\ 1 & -3 & 2 & c \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & -3 & 2 & c \\ 0 & 1 & -1 & a - 2c \\ 0 & 0 & 0 & -a + b - c \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & -1 & 3a - 5c \\ 0 & 1 & -1 & a - 2c \\ 0 & 0 & 0 & a - b + c \end{bmatrix}$$

The condition is that a - b + c = 0.

(b) Assuming that the condition is satisfied, obtain an expression (which will involve some of a, b, or c) for the general solution.

Assuming that a - b + c = 0, so that the last row is zero, we have $x_3 = r$, $x_2 = x_3 + a - 2c = r + a - 2c$, and $x_1 = x_3 + 3a - 5c = r + 3a - 5c$, so the general solution is (r + 3a - 5c, r + a - 2c, r).