11. (2/21) Let \(\alpha \) and \(\beta \) be two curves on \(F = F_{2,0} \) which intersect in two points with the same orientations. Let \(G \) be a manifold regular neighborhood of \(\alpha \cup \beta \), like the neighborhoods considered in the proof that \(d(\alpha, \beta) \leq 2 \log_2(i(\alpha, \beta)) + 2 \), so that \(G \) deformation retracts to \(\alpha \cup \beta \).

1. Use the classification of surfaces to verify that \(G \) must be a twice-punctured torus \(F_{1,2} \). Hint: Show that \(G \) has \(\chi(G) = -2, g \geq 1, \) and \(b \geq 1 \).

2. Since \(G \) is a twice-punctured torus, \(S - G \) is either an annulus or the union of a once-punctured torus and a disk. On a standard picture of \(F_{2,0} \), try to draw an example of each type.

12. (2/21) For a (compact, connected, orientable) surface \(S \) with nonempty boundary, a pair of curves \(\alpha \) and \(\beta \) is said to fill \(S \) if every nontrivial curve in \(S \) must meet \(\alpha \cup \beta \). Equivalently, every component of \(S - (\alpha \cup \beta) \) is either an open disk or a half-open annulus \((0, 1) \times S^1\) that contains a boundary circle of \(S \). Try to draw two curves that fill the twice-punctured torus \(F_{1,2} \).

13. (2/28) Let \(A \) be a \(2 \times 2 \) matrix with complex entries.

1. Check that the characteristic polynomial of \(A \) is \(\lambda^2 - \text{tr}(A)\lambda + \det(A) \).

2. Use the Cayley-Hamilton Theorem to deduce that if \(A \in \text{SL}(2, \mathbb{R}) \) and \(\text{tr}(A) = -1 \), then \(A^3 - I = 0 \), and hence \(A \) has order 3. Obtain similar results when \(\text{tr}(A) = 0 \) and \(\text{tr}(A) = 1 \).

3. Show that if \(A \in \text{SL}(2, \mathbb{R}) \) and \(|\text{tr}(A)| > 2 \), then \(A \) has two real eigenvalues which are reciprocals, one of which has absolute value greater than 1. Deduce that \(A \) has infinite order.

14. (2/28) Following the program we used with \[
\begin{bmatrix}
4 & 3 \\
5 & 4
\end{bmatrix}
\]
analyze the action of \[
\begin{bmatrix}
2 & 1 \\
1 & 1
\end{bmatrix}
\]
on the torus. That is:

1. Calculate the eigenvalues \(\{\lambda, 1/\lambda\} \) and associated length 1 eigenvectors \(v_\lambda \) and \(v_{1/\lambda} \).

2. Express the standard basis \(\{e_1, e_2\} \) (that correspond to the curves we call \(L \) and \(M \) on the torus) in terms of the basis \(\{v_\lambda, v_{1/\lambda}\} \). Use this to redraw the standard fundamental domain (spanned by \(e_1 \) and \(e_2 \)) using the basis \(\{v_\lambda, v_{1/\lambda}\} \).

3. Examine the stable and unstable foliations, first from the viewpoint of the basis \(\{v_\lambda, v_{1/\lambda}\} \). Find their slopes with respect to the standard basis, and try to imagine them on the torus and how the element \[
\begin{bmatrix}
2 & 1 \\
1 & 1
\end{bmatrix}
\]
acts on the torus.