
Mathematics 2423-001H
Final Examination
May 8, 2007

Name (please print)

I.
(8)

Consider the portion of the graph y = e−x between x = 0 and x = 1. For each of the following, write an
integral whose value is the specified quantity for this portion of the graph, but do not attempt to evaluate
the integrals.

1. The length of this portion of the graph.

ds =

√
1 +

(
dy
dx

)2
dx =

√
1 + (−e−x)2 dx =

√
1 + e−2x dx, so the length is

∫ 1

0

√
1 + e−2x dx

2. The surface area obtained when it is rotated about the x-axis.

The distance from (x, e−x) to the x-axis is e−x, so the surface area is
∫ 1

0
2πe−x

√
1 + e−2x dx.

3. The surface area obtained when it is rotated about the line y = −1.

The distance from (x, e−x) to the line y = −1 is 1+e−x, so the surface area is
∫ 1

0
2π(1+e−x)

√
1 + e−2x dx.

4. The surface area obtained when it is rotated about the y-axis.

The distance from (x, e−x) to the y-axis is x, so the surface area is
∫ 1

0
2πx

√
1 + e−2x dx.

II.
(6)

Simpson’s Rule states that
∫ b

a
f(x) dx ≈ h

3
(y0 +4y1 +2y2 +4y3 + · · ·+4yn−1 +yn), with error of magnitude

at most
K(b− a)

180
h4, where |f (4)(x)| ≤ K for a ≤ x ≤ b. Use Simpson’s rule with n = 4 to approximate∫ 1

−1
x4 dx, and give a bound for the error. Leave both answers as fractions, not decimals.

We have x0 = −1, x1 = −1/2, x2 = 0, x3 = 1/2, and x4 = 1, so y0 = 1, y1 = 1/16, y2 = 0, y3 = 1/16,
and y4 = 1. Also h = (2− 0)/4 = 1/2. So the formula for Simpson’s Rule gives the estimate

1/2
3

(
1 + 4 · (1/16) + 2 · 0 + 4 · (1/16) + 1

)
=

5
12

.

To calculate the error, we know that the fourth derivative of x4 is the constant function 4! = 24,
whose maximum value on [0, 2] is K = 16. Also, h4 = (1/2)4 = 1/16. So the error bound is

24 · (1− (−1))
180 · 16

=
1
60

.
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III.
(6)

Let C be the portion of the unit circle that lies in the first quadrant.

(i) Write the standard equation for C of the form y = f(x), 0 ≤ x ≤ 1, and calculate that ds =
1√

1− x2
dx.

The standard equation is y =
√

1− x2, and we calculate

ds =

√
1 +

(dy

dx

)2
dx =

√
1 +

( −x√
1− x2

)2
dx =

√
1− x2

1− x2
+

x2

1− x2
dx =

√
1

1− x2
dx =

1√
1− x2

dx

(ii) Integrate this to find the length of C. If the integral is improper, show the details of how you handle it.∫ 1

0

1√
1− x2

dx = lim
b→1

∫ b

0

1√
1− x2

dx = lim
b→1

sin−1(x)
∣∣∣b
0

= lim
b→1

sin−1(b)− sin−1(0) =
π

2

IV.
(3)

Verify that y = a sinh(x) + b cosh(x) is a solution to the differential equation y′′ = y.

Calculating y′ = a cosh(x) + b sinh(x) and y′′ = a sinh(x) + b cosh(x), we have y′′ = y.

V.
(6)

State the Fundamental Theorem of Calculus (both parts, of course).

For a continuous function f(x),
d

dx

∫ x

a
f(t) dt = f(x), and if F ′(x) = f(x), then

∫ b

a
f(x) dx =

F (b)− F (a).

VI.
(4)

Calculate a Riemann sum for the function f(x) = x2 on the interval [0, 6], using the partition with x1 = 1,
x2 = 2, and x3 = 4, and using midpoints as the sample points.

The endpoints are x0 = 0 and x4 = 6. We have ∆x1 = x1 − x0 = 1, ∆x2 = x2 − x1 = 1, ∆x3 =
x3 − x2 = 2, and ∆x4 = x4 − x3 = 2. The midpoints are x∗1 = 1/2, x∗2 = 3/2, x∗3 = 3, and x∗4 = 5, so
the Riemann sum is

f(x∗1) ∆x1 + f(x∗2) ∆x2 + f(x∗3) ∆x3 + f(x∗4) ∆x4 = 1
4 · 1 + 9

4 · 1 + 9 · 2 + 25 · 2 = 70 1
2

VII.
(8)

For each of the following rational functions, write out the precise form of the partial fraction decomposition.
Do not solve for unknown values of the coefficients.

1.
x5 − x2

(x3 + x)3

The denominator factors into linear and irreducible quadratic factors as x3(x2+1)3, so the decomposition
is

A

x
+

B

x2
+

C

x3
+

Dx + E

x2 + 1
+

Fx + G

(x2 + 1)2
+

Hx + I

(x2 + 1)3

(Since
x5 − x2

(x3 + x)3
=

x3 − 1
x(x2 + 1)3

, the terms
B

x2
and

C

x3
can be omitted.)

2.
1

(x2 + x + 1)(x2 + x− 1)

x2 + x + 1 is irreducible, but x2 + x− 1 has real roots
−1±

√
5

2
, so it factors as

(
x− −1−

√
5

2

)(
x−

−1 +
√

5
2

)
. So the decomposition is

A

x− −1−
√

5
2

+
B

x− −1 +
√

5
2

+
Cx + D

x2 + x + 1
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VIII.
(6)

Use l’Hôpital’s rule to evaluate the following limits.

1. lim
x→0+

sin(x) ln(x)

lim
x→0+

sin(x) ln(x) = lim
x→0+

ln(x)
csc(x)

= lim
x→0+

1/x

− csc(x) cot(x)

= lim
x→0+

sin2(x)
−x cos(x)

= lim
x→0+

− sin(x)
cos(x)

sin(x)
x

= (−0) · 1 = 0

2. lim
x→0

xx

lim
x→0+

xx = lim
x→0+

eln(xx) = lim
x→0+

ex ln(x) = lim
x→0+

eln(x)/(1/x) = lim
x→0+

e(1/x)/(−1/x2) = lim
x→0+

e−x = 1

IX.
(20)

Evaluate the following integrals:

1.
∫

log10(x)
x

dx∫
log10(x)

x
dx =

∫
1

ln(10)
ln(x)

x
dx. Using u = ln(x), du =

1
x

dx, the latter is
(ln(x))2

2 ln(10)
+ C.

2.
∫

cosh(x)
cosh2(x)− 1

dx

∫
cosh(x)

cosh2(x)− 1
dx =

∫
cosh(x)
sinh2(x)

dx. Using u = sinh(x), du = cosh(x) dx, the latter is

(sinh(x))−1

−1
+ C =

−1
sinh(x)

+ C.

3.
∫ ln(5)

1
x2 ex dx

Use parts twice. The first time, u = x2, du = 2x dx, dv = ex dx, and v = ex, so
∫ ln(5)

1
x2 ex dx =

2x ex
∣∣∣ln(5)

1
−

∫ ln(5)

1
x2 ex dx = (ln(5))2 · 5− 2 · 1−

∫ ln(5)

1
2x ex dx = 5(ln(5))2 − 2−

∫ ln(5)

1
2x ex dx. Now

using parts with u = 2x, du = 2 dx, dv = ex dx, and v = ex, the latter expression is 5(ln(5))2 − 2 −∫ ln(5)

1
2x ex dx = 5(ln(5))2−2−

(
2x ex

∣∣∣ln(5)

1
−

∫ ln(5)

1
ex dx

)
= 5(ln(5))2−2−

(
2 ln(5)·5−2·1−(5−e)

)
=

5(ln(5))2 − 10 ln(5) + 5− e.

4.
∫

1
x2 + x + 1

dx

Completing the square and substituting u =
2x + 1√

3
, we have∫

1
x2 + x + 1

dx =
∫

1
x2 + x + 1/4 + 3/4

dx =
∫

1
(x + 1/2)2 + 3/4

dx =
4
3

∫
1

1 +
(

2x + 1√
3

)2 dx

=
√

3
2

4
3

∫
1

1 + u2
du =

2√
3

tan−1(u) + C =
2√
3

tan−1

(
2x + 1√

3

)
+ C
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5.
∫

x cos2(x) dx∫
x cos2(x) dx =

∫
x
(

1
2 + 1

2 cos(2x)
)
dx =

∫
x
2 + x

2 cos(2x) dx = x2

4 +
∫

x
2 cos(2x) dx.

Using parts with u = x
2 and dv = cos(2x) dx, the latter expression becomes

x2

4 + x
4 sin(2x)−

∫
1
4 sin(2x) dx = x2

4 + x
4 sin(2x) + cos(2x)

8 + C.

X.
(4)

Find the domain and range of the function f(x) = ln(tan−1(x)).

In order that the logarithm be defined, we must have tan−1(x) > 0. This is true exactly when x > 0,
so the domain is (0,∞). The values of tan−1(x) when x is in (0,∞) are (0, π

2 ), so the values of
ln(tan−1(x)) lie between −∞ and ln(π

2 ). That is, the range is (−∞, ln(π
2 )).

XI.
(8)

Consider the function y = e−x.

1. Calculate ds.

We first calculate that ds =

√
1 +

(
dy
dx

)2
dx =

√
1 + (−e−x)2 dx =

√
1 + e−2x dx.

2. Write an improper integral whose value is the surface area produced when the graph of the function y = e−x,
0 ≤ x < ∞, is rotated about the x-axis.

The distance to the axis of rotation is e−x, so the integral is
∫ ∞

0
2πe−x

√
1 + e−2x dx.

3. Evaluate the integral, using the substitution u = e−x and the integration formula
∫ √

a2 + u2 du =

u

2

√
a2 + u2 +

a2

2
ln(u +

√
a2 + u2) + C.

Using the substitution u = e−x, du = −e−x dx, and noting that u → 0 as x →∞, we calculate∫ ∞

0
2πe−x

√
1 + e−2x dx = lim

b→∞

∫ b

0
2πe−x

√
1 + e−2x dx = lim

b→0

∫ b

1
−2π

√
1 + u2 du

= lim
b→0

−2π
u

2

√
1 + u2 − 2π

1
2

ln(u +
√

1 + u2)
∣∣∣∣b
1

= lim
b→0

−πb
√

1 + b2 − π ln(b +
√

1 + b2) + π
√

1 + 1 + π ln(1 +
√

1 + 1)

= 0− π ln(1) +
√

2 π + ln(1 +
√

2) π =
√

2 π + ln(1 +
√

2) π


