I. Let \(f : X \rightarrow Y \) and \(g: Y \rightarrow Z \). Prove that if \(f \) and \(g \) are injective, then the composition \(g \circ f \) is injective.

Assume that \(f \) and \(g \) are injective. Let \(x_1, x_2 \in X \) and assume that \(g(f(x_1)) = g(f(x_2)) \). Since \(g \) is injective, this implies that \(f(x_1) = f(x_2) \). Since \(f \) is injective, this implies that \(x_1 = x_2 \).

II. Prove that if \(a \equiv b \mod m \) and \(b \equiv c \mod m \), then \(a \equiv c \mod m \).

Assume that \(a \equiv b \mod m \) and \(b \equiv c \mod m \). Then, \(m|a - b \) and \(m|b - c \), so \(m|(a - b) + (b - c) \). Since this says that \(m|a - c \), we have \(a \equiv c \mod m \).

III. Give Euclid’s proof that there are infinitely many primes.

Suppose for contradiction that there are only finitely many primes, say \(p_1, p_2, \ldots, p_k \). Put \(N = p_1p_2 \cdots p_k + 1 \). Notice that no \(p_i \) divides \(N \).

If \(N \) is prime, then it is a prime different from any of the \(p_i \), a contradiction. If \(N \) is composite, the Fundamental Theorem of Arithmetic ensures that we can write it as \(N = q_1q_2 \cdots q_m \). But then, \(q_1 \) is a prime which divides \(N \), so \(q_1 \) is a prime which is not equal to any of the \(p_i \), again contradicting the fact that \(p_1, p_2, \ldots, p_k \) are the only primes.

[Of course, as seen in class there are several other reasonable ways to write this proof.]

IV. State the Fundamental Theorem of Arithmetic.

Any integer greater than 1 can be written as a product of prime factors. If the factors are written in nondecreasing order, then this factorization is unique.

V. (a) Show that \(ac \equiv bc \mod m \) and \(c \not\equiv 0 \mod m \) does not always imply that \(a \equiv b \mod m \).

\[1 \cdot 2 \equiv 3 \cdot 2 \mod 4 \text{ and } 2 \not\equiv 0 \mod 4, \text{ but } 1 \not\equiv 3 \mod 4. \]

(b) Tell without proof a condition (which always holds when \(m \) is prime and \(c \not\equiv 0 \mod m \)) that ensures that \(ac \equiv bc \mod m \) does imply that \(a \equiv b \mod m \).

\[\gcd(c, m) = 1. \]

VI. Prove that \(1 \cdot 1! + 2 \cdot 2! + \cdots + n \cdot n! = (n + 1)! - 1 \) whenever \(n \) is a positive integer.

For \(n = 1 \), we have \(1 \cdot 1! = 1 \cdot 1 = 1 \) and \((1 + 1)! - 1 = 2 - 1 = 1 \), so the assertion is true for \(n = 1 \). Inductively, assume that \(1!+2\cdot2!+\cdots+k\cdot k! = (k+1)!-1 \). Then, \(1!+2\cdot2!+\cdots+k\cdot k! = (k+1)! - 1 + (k + 1) \cdot (k + 1)! = (1 + (k + 1)) \cdot (k + 1)! - 1 = (k + 2) \cdot (k + 1)! - 1 = (k + 2)! - 1. \)
VII. Let X be the set of all infinite sequences in which each term is one of the letters a, b, or c. Some elements of X are $\text{bbbbaaabbccbaabbccc}\ldots$, $\text{aabbcaabbaabcbbaacbabacaabacbbbacbc}\ldots$, and $\text{ababccbbaccbcbacbacbababaacbbbacbc}\ldots$. Using Cantor’s idea, prove that there does not exist any surjective function from \mathbb{N} to X.

Suppose for contradiction that there exists a surjective function $f: \mathbb{N} \to X$. List the elements $f(1)$, $f(2)$, \ldots as

$$f(1) = x_{11}x_{12}x_{13}\ldots$$
$$f(2) = x_{21}x_{22}x_{23}\ldots$$
$$f(3) = x_{31}x_{32}x_{33}\ldots$$

Define a sequence $x = x_1x_2x_3\ldots$ in X by $x_i = a$ if $x_{ii} = b$ or $x_{ii} = c$, and $x_i = b$ if $x_{ii} = a$. For all n, $x_n \neq x_{nn}$ so $x \neq f(n)$. Therefore x is an element of X which is not in the range of f, contradicting the fact that f is surjective.

VIII. Let Y be the set of all positive fractions (not rational numbers, so $\frac{1}{2}$ and $\frac{3}{4}$ are different fractions). Using Cantor’s idea, prove that Y is countable.

Arrange the fractions m/n with $m, n \in \mathbb{N}$ is an infinite array:

$$
\begin{array}{cccccc}
1/1 & 1/2 & 1/3 & 1/4 & \cdots \\
2/1 & 2/2 & 2/3 & 2/4 & \cdots \\
3/1 & 3/2 & 3/3 & 3/4 & \cdots \\
4/1 & 4/2 & 4/3 & 4/4 & \cdots \\
& & & & \\
\end{array}
$$

The Cantor method of going up and down the diagonals allows us to turn this into a single list: $1/1, 1/2, 2/1, 3/1, 2/2, 1/3, 1/4, 2/3, 3/2, 4/1, \ldots$. Then, we define a bijection from \mathbb{N} to the set of positive fractions by sending n to the n^{th} fraction in this list.

IX. Let B be a nonempty set, so that we can choose an element b_0 of B. Prove that there exists a surjective function from $\mathcal{P}(B)$ to B.

Define $f: \mathcal{P}(B) \to B$ by the rule that $f(S) = b$ if S is of the form $\{b\}$, and $f(S) = b_0$ if S does not have cardinality 1. This is surjective, since if b is any element of B, then $f(\{b\}) = b$, so b is in the range of f.

X. Let a, b, and c be integers. Using the definition of “divides”, prove that if $a|b$ and $b|c$, then $a|c$.

Assume that $a|b$ and $b|c$. Then there exists some n such that $b = na$, and there exists some m so that $c = mb$. Therefore $c = mb = (mn)a$, so $a|c$.
Let Z be an infinite set.

(5) Informally, saying that Z is countable means that it is possible to list the elements of Z. This is not a real definition, since the word “list” is not precise. Give the formal definition of “Z is countable.”

Z is countable when there exists a bijective function from \mathbb{N} to Z.

(b) Now suppose that Z is set of all infinite sequences in which each term is one of the letters a, or b, and exactly one of the terms is b. Some elements of Y are baaaaaaaaaa, aaaaaaaaaabaaaaa, and aaaaaaaaaaaabaaaaa· · ·, where in the last sequence the b appears after exactly $35,014,227$ a’s have appeared. Prove that Z is countable.

Define $f: \mathbb{N} \rightarrow Z$ by $f(n) = aaaa\ldotsaaaabaaaaa\ldots$, where the b is in the nth place. This is injective, since if $f(m) = f(n)$ then the b appears in the mth position and the nth position, and as there is only one b we must have $m = n$. Also, it is surjective, since if aaaa\ldotsaaaabaaaaa\ldots is any sequence in Z, then putting n equal to the place in which the b occurs, this sequence is $f(n)$.

XII. Let m and n be two positive integers. Show that if $mn = 360$ and the least common multiple of m and n is 10 times their greatest common divisor, then both m and n are divisible by 6.

In general, $mn = \text{lcm}(m,n) \cdot \text{gcd}(m,n)$, and in this case we have $\text{lcm}(m,n) = 10 \cdot \text{gcd}(m,n)$, so $mn = 10 \cdot \text{gcd}(m,n)^2$. Since $mn = 360$, this says that $\text{gcd}(m,n)^2 = 36$, so $\text{gcd}(m,n) = 6$. Therefore 6 divides both m and n. [Possibilities for \{m,n\} are \{6,60\} and \{12,30\}.]