I. Write the following as an implication: “\(b^2 \geq 2 \) for at most one \(b \).” (2)

II. Let \(T(p,c) \) be “Person \(p \) has traveled to the city \(c \).” Write each of the following statements in logical notation, putting in all necessary quantifiers using the sets \(P \) of all people and \(C \) of all destination cities. If your answer involves a negation, simplify as much as possible.
 (a) Joan has been to Paris or London.
 (b) Everyone has traveled to at least one city.
 (c) No one has traveled to every city.
 (d) Any two people have traveled to at least one city in common.
 (4)

III. For the function \(H: s \to t \) (where \(s \) and \(t \) are sets), give definitions of the following. As requested in the instructions, give the precise definitions, using logical notation and/or set notation as appropriate.
 (a) the range of \(H \)
 (b) the preimage of an element \(T \) of \(t \)
 (c) the inverse function \(H^{-1} \), assuming that \(N \) is bijective (part of giving the definition of a function is telling its domain and codomain).
 (d) the composition \(G \circ H \), assuming that \(G: t \to u \) (part of giving the definition of a function is telling its domain and codomain).
 (e) \(H = K \), where \(K: u \to v \)
 (f) the graph of \(H \)
 (10)

IV. Let \(X \) be an infinite set.
 (a) Define what it means to say that \(X \) is countable.
 (b) Show a function that verifies that \(Z \) is countable.
 (4)

V. Write out all elements of \(\mathcal{P}\{1, 2\} \) and all elements of \(\mathcal{P}\{1, 2\} \times \{1, 2, 3\} \).
 (4)

VI. Let \(f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \) be the function defined by \(f(m, n) = m^2 - n \). Prove that \(f \) is surjective.
 (4)

VII. Let \(f: X \to Y \) and \(g: Y \to Z \). Prove that if \(f \) and \(g \) are injective, then the composition \(g \circ f \) is injective.
 (4)

VIII. Disprove the following assertion: for all sets \(A, B, \) and \(C \), if \(A \cap C = B \cap C \), then \(A = B \).
 (4)

IX. Let \(f: (0, \pi) \to (0, \infty) \) be the function defined by \(f(x) = \csc(x) \), where the cosecant function is as usual given by \(\csc(x) = \frac{1}{\sin(x)} \).
 (a) Prove that \(f \) is not injective.
 (b) Prove that \(f \) is not surjective.
 (8)

X. Give an example of a function from \(\mathbb{R} \) to \(\mathbb{R} \) that is injective but not surjective.
 (4)

XI. Let \(A = \mathbb{R} \) and \(B = \mathbb{Z} \). Give examples of each of the following.
 (a) An element of \(A \times B \) that is not in \(B \times B \).
 (b) An element of \(B \times A \) that is not in \(B \times B \).
 (c) An element of \(A \times A \) that is neither in \(A \times B \) nor in \(B \times A \).
 (3)