March 23, 2006

Instructions: Give brief, clear answers. "Prove" means "give an argument". In giving definitions, give the *precise* definition, using logical notation and/or set notation as appropriate.

I. Write the following as an implication: " $a^2 \ge 2$ for at most one a".

(2)

- II. Let T(p,c) be "Person p has traveled to the city c." Write each of the following statements in logical
- (4) notation, putting in all necessary quantifiers using the sets \mathcal{P} of all people and \mathcal{C} of all destination cities. If your answer involves a negation, simplify as much as possible.
 - (a) Jeff has been to Madrid or Paris.
 - (b) No one has traveled to every city.
 - (c) Everyone has traveled to at least one city.
 - (d) Any two people have traveled to at least one city in common.
- III. Write out all elements of $\mathcal{P}(\{a,b\})$ and all elements of $\mathcal{P}(\{a,b\}) \times \{a,b,c\}$.

(4)

- IV. For the function $G: s \to t$ (where s and t are sets), give definitions of the following. As requested in the
- (10) instructions, give the *precise* definitions, using logical notation and/or set notation as appropriate.
 - (a) the range of G
 - (b) the preimage of an element T of t
 - (c) the inverse function G^{-1} , assuming that G is bijective
 - (d) the composition $H \circ G$, assuming that $H : t \to u$ (part of giving the definition of a function is telling its domain and codomain).
 - (e) G = K, where $K : u \to v$
 - (f) the graph of G
- \mathbf{V} . Let X be an infinite set.
- (4) (a) Define what it means to say that X is countable.
 - (b) Show a function that verifies that \mathbb{Z} is countable.
- **VI**. Let $f: X \to Y$ and $g: Y \to Z$. Prove that if f and g are injective, then the composition $g \circ f$ is injective.

(4)

- **VII.** Let $f:(0,\pi)\to(0,\infty)$ be the function defined by $f(x)=\csc(x)$, where the cosecant function is as usual
- (8) given by $\csc(x) = \frac{1}{\sin(x)}$.
 - (a) Prove that f is not injective.
 - (b) Prove that f is not surjective.
- **VIII.** Let $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ be the function defined by $f(m,n) = m^2 n$. Prove that f is surjective.

(4)

IX. Disprove the following assertion: for all sets A, B, and C, if $A \cap B = A \cap C$, then B = C.

(3)

X. Give an example of a function from \mathbb{R} to \mathbb{R} that is injective but not surjective.

(4)

- **XI**. Let $A = \mathbb{R}$ and $B = \mathbb{Z}$. Give examples of each of the following.
- (3) (a) An element of $A \times B$ that is not in $B \times B$.
 - (b) An element of $B \times A$ that is not in $B \times B$.
 - (c) An element of $A \times A$ that is neither in $A \times B$ nor in $B \times A$.