Math 2513 homework

28. (4/13) 2.4 # 28, 30, 38-40

29. (4/13) Prove the following.
 (a) $\forall a \in \mathbb{Z}, a \equiv a \mod m$.
 (b) $\forall a \in \mathbb{Z}, \forall b \in \mathbb{Z}, a \equiv b \mod m \Rightarrow b \equiv a \mod m$.
 (c) $\forall a \in \mathbb{Z}, \forall b \in \mathbb{Z}, \forall c \in \mathbb{Z}, (a \equiv b \mod m \land b \equiv c \mod m) \Rightarrow a \equiv c \mod m$.

 (a) Prove that $\gcd(a, p) = 1$ if and only if p does not divide a.
 (b) Using a fact presented in class, prove that if $c \not\equiv 0 \mod p$ and $ac \equiv bc \mod p$,
 then $a \equiv b \mod p$. (That is, when working “mod a prime”, one can always cancel
 nonzero common factors from both sides of an equation.)

31. (4/13) 2.5 # 22

32. (4/13) 3.2 # 31

33. (4/13) 3.2 # 38 (arrange the pairs (m, n) analogously to the way we arranged the
 positive fractions when proving that \mathbb{Q} is countable)

34. (4/13) Let S be the set of sequences of 0’s and 1’s, $S = \{a_1a_2a_3\cdots | a_i \in \{0,1\}\}$. A
 typical element of S is 00101101100011010\cdots. Adapt the proof that \mathbb{R} is uncountable
 to prove that S is uncountable.

35. Let X be a set.
 (a) Prove that there does not exist a surjective function from X to $\mathcal{P}(X)$.
 (b) Prove that if X is nonempty, then there exists a surjective function from $\mathcal{P}(X)$
 to X.

36. 3.3 # 7, 10, 12, 20 (give 3 proofs: 1. using induction, 2. using congruence, and 3.
 deduce it from the fact, proven in class, that $3 | n^3 - n$), 23, 41, 52

37. 4.1 # 2, 3, 7-9

38. 4.1 # 28, 29, 32, 33, 36

39. 4.2 # 3, 8

40. 4.2 # 13, 14, 20, 21, 22, 31

41. 4.3 # 1, 8, 9, 25, 26

42. 4.4 # (don’t worry about these for the final exam, do them for fun over the summer)
 3, 4, 12, 21a), 30, 31 Hint: # 31 follows almost immediately from the identity $0 =$
 $\sum_{k=0}^{n} (-1)^k \binom{n}{k}$.