16. (3/9) Give formal proofs that the following functions are onto:

(i) \(f : \mathbb{R} \to \mathbb{R} \) defined by \(f(x) = 7x - 4 \).
(ii) \(f : \mathbb{R} \times \mathbb{R} \times \mathbb{R} \to \mathbb{R}_{\geq 0} \) defined by \(f(x, y, z) = x^2 + y^2 + z^2 \).

17. (3/9) Give formal proofs that the following functions are not onto:

(i) \(f : \mathbb{R} - \{n\pi | n \in \mathbb{Z}\} \to \mathbb{R} \) defined by \(f(x) = \csc(x) \).
(ii) \(f : \mathbb{R} \times \mathbb{R} \times \mathbb{R} \to \mathbb{R} \) defined by \(f(x, y, z) = x^2 + y^2 + z^2 \).

18. (3/9) Give formal proofs that the following functions are injective:

(i) \(f : \mathbb{R} \to \mathbb{R} \) defined by \(f(x) = 7x - 4 \).
(ii) \(f : \mathbb{R} \times \mathbb{R} \to \mathbb{R} \times \mathbb{R} \) defined by \(f(x, y) = (2x + y, x + y) \).

19. (3/9) Give formal proofs that the following functions are not injective:

(i) \(f : \mathbb{N} \times \mathbb{N} \to \mathbb{N} \) defined by \(f(m, n) = mn \).
(ii) \(f : \mathbb{R} \to \mathbb{R} \) defined by \(f(x) = x^2 - 3x + 4 \).

20. (3/9) 1.8 # 16

21. (3/30) 1.8 # 17, 25, 31

22. (3/30) 1.8 # 26 (The answer is “yes”— assume that \(f \) and \(f \circ g \) are injective and deduce that \(g \) is injective. Did you even need the assumption that \(f \) was injective?), 27 (The answer is “no”. There are many examples of \(f \) and \(g \) for which the assertion is false— one such example can be given using squaring function with various domains and codomains)

23. (3/30) 1.8 # 34 (“inverse image” is what I called “preimage of a set”), 35 (the “floor” function \(\lfloor \cdot \rfloor : \mathbb{R} \to \mathbb{Z} \) is defined by putting \(\lfloor x \rfloor \) equal to the largest integer that is less than or equal to \(x \)), 36 (it is convenient to use the observation that \(x \in f^{-1}(B) \iff f(x) \in B \))

24. (3/30) 2.4 # 2, 4, 6, 7, 8 (if you want, use a Google search to find a list of primes), 12, 13

25. (4/13) Know Euclid’s proof that there are infinitely many primes.

26. (4/13) Prove that \(a|n \iff a| - n \).

27. (4/13) 2.4 #16, 17