26. (3/8) Let \(\alpha : I \to S^1 \) be a path. Let \(\tilde{\beta}_1 \) and \(\tilde{\beta}_2 \) be two lifts of \(\alpha \) to \(\mathbb{R} \). Prove that for some \(N \in \mathbb{Z} \), \(\tilde{\beta}_2(t) = \tilde{\beta}_1(t) + N \) for all \(t \in I \) (let \(N = \tilde{\beta}_2(0) - \tilde{\beta}_1(0) \) and define \(\tau(r) = r + N \), check that \(p \circ \tau = p \), and use uniqueness of path lifting). Deduce that \(\tilde{\beta}_1(1) - \tilde{\beta}_1(0) = \tilde{\beta}_2(1) - \tilde{\beta}_2(0) \).

Let \(N = \tilde{\beta}_2(0) - \tilde{\beta}_1(0) \). Since \(p(\tilde{\beta}_1(0) - \tilde{\beta}_1(0)) = \exp(2\pi i \tilde{\beta}_2(0) - 2\pi i \tilde{\beta}_1(0)) = \exp(2\pi i \tilde{\beta}_2(0))/\exp(2\pi i \tilde{\beta}_1(0)) = p(\tilde{\beta}_2(0))/p(\tilde{\beta}_1(0)) = \alpha(0)/\alpha(0) = 1 \), \(N \) is an integer. Define \(\tau : \mathbb{R} \to \mathbb{R} \) by \(\tau(r) = r + N \), so that \(p \circ \tau(r) = p(r + N) = p(r) \), that is, \(p \circ \tau = p \). We have \(p \circ \tau \circ \tilde{\beta}_1 = p \circ \tilde{\beta}_1 = \alpha \), and \(\tau \circ \tilde{\beta}_1(0) = \tilde{\beta}_2(0) \), so by uniqueness of lifts, \(\tau \circ \tilde{\beta}_1 = \tilde{\beta}_2 \), that is, \(\tilde{\beta}_2(t) = \tilde{\beta}_1(t) + N \) for all \(t \). In particular, for \(t = 1 \) we have \(\tilde{\beta}_2(1) = \tilde{\beta}_1(1) + \tilde{\beta}_2(0) - \tilde{\beta}_1(0) \), so \(\tilde{\beta}_1(1) - \tilde{\beta}_1(0) = \tilde{\beta}_2(1) - \tilde{\beta}_2(0) \).

27. (3/8) Prove that \(q : Z \times \mathbb{R} \to S^1 \) defined by \(q(n, r) = p(r) \) has unique path lifting and unique homotopy lifting. (Let \(\alpha : I \to S^1 \) and let \((n, r_0) \in Z \times \mathbb{R} \) with \(q(n, r_0) = \alpha(0) \). By unique path lifting for \(\mathbb{R} \to S^1 \), there exists \(\tilde{\alpha}_1 : I \to \mathbb{R} \) with \(p \circ \tilde{\alpha}_1(t) = \alpha(t) \). Use \(\tilde{\alpha}_1 \) to define the lift \(\tilde{\alpha} \). To prove that the \(\tilde{\alpha} \) is unique, let \(p_1 : Z \times \mathbb{R} \to Z \) and \(p_2 : Z \times \mathbb{R} \to \mathbb{R} \) be the projection maps, and show that \(p_1 \circ \tilde{\alpha} \) and \(p_2 \circ \tilde{\alpha} \) are uniquely determined.)

Let \(\alpha : I \to S^1 \) and let \((n, r_0) \in Z \times \mathbb{R} \) with \(q(n, r_0) = \alpha(0) \). By unique path lifting for \(\mathbb{R} \to S^1 \), there exists \(\tilde{\alpha}_1 : I \to \mathbb{R} \) with \(p \circ \tilde{\alpha}_1(t) = \alpha(t) \). Define \(\tilde{\alpha} : I \to Z \times \mathbb{R} \) by \(\tilde{\alpha}(t) = (n, \tilde{\alpha}_1(t)) \); this is a lift of \(\alpha \). To prove that it is unique, suppose that \(\tilde{\gamma} : I \to Z \times \mathbb{R} \) is any lift of \(\alpha \) starting at \((n, r_0) \). Let \(p_1 : Z \times \mathbb{R} \to Z \) and \(p_2 : Z \times \mathbb{R} \to \mathbb{R} \) be the projection maps. Now \(p_1 \circ \tilde{\gamma} : I \to Z \), and since the maximal connected subsets of \(Z \) are points, \(p_1 \circ \tilde{\gamma} \) must be the constant map to \(n \). On the other hand, \(p_2 \circ \tilde{\gamma} : I \to \mathbb{R} \), and \(p_2 \circ \tilde{\gamma} = q \circ \tilde{\gamma} = \alpha \), so by uniqueness of lifts to \(\mathbb{R} \), \(p_2 \circ \tilde{\gamma} = \tilde{\alpha}_1 \). Since \(p_1 \circ \tilde{\alpha} = p_1 \circ \tilde{\alpha} \) and \(p_2 \circ \tilde{\alpha} = p_2 \circ \tilde{\gamma} = p_2 \circ \tilde{\alpha} \), we have \(\tilde{\gamma} = \tilde{\alpha} \).

The proof for unique lifting of homotopies is very similar.

28. (3/8) Prove that \(q_n : S^1 \to S^1 \) defined by \(q_n(z) = z^n \) (where \(z \in \mathbb{C} \)) has unique path lifting and unique homotopy lifting. Hint: do not repeat the proof of these results for \(p : \mathbb{R} \to S^1 \) Define \(p_n : \mathbb{R} \to S^1 \) by \(p_n(r) = p(r/n) \) and use the facts that \(p = q_n \circ p_n \) and that \(p \) has unique path lifting and unique homotopy lifting.

Let \(\alpha : I \to S^1 \) and suppose that \(s_0 \in S^1 \) with \(p(s_0) = \alpha(0) \). Define \(p_n : \mathbb{R} \to S^1 \) by \(p_n(r) = p(r/n) \), so that \(q_n \circ p_n(r) = (e^{2\pi i r/n})^n = e^{2\pi i r} = p(r) \), that is, \(q_n \circ p_n = p \). Choose \(r_0 \in \mathbb{R} \) with \(p_n(r_0) \). By unique lifting for \(p \), there exists \(\tilde{\alpha} : I \to \mathbb{R} \) so that \(p \circ \tilde{\alpha} = \alpha \). Then, we have \(p_n \circ \tilde{\alpha} : I \to S^1 \) with \(q_n \circ p_n \circ \tilde{\alpha} = p \circ \tilde{\alpha} = \alpha \), and \(p_n \circ \tilde{\alpha}(0) = p_n(r_0) = s_0 \), proving existence of lifts for \(q_n \).

For uniqueness, suppose that \(\tilde{\alpha}_1, \tilde{\alpha}_2 : I \to S^1 \) are two lifts of \(\alpha \) taking 0 to \(s_0 \). Define \(s_n : \mathbb{R} \to \mathbb{R} \) by \(s_n(r) = nr \), so that \(p_n \circ s_n = p \) and \(p_n \circ s_n(r_0/n) = s_0 \). By uniqueness of lifts for \(p \), for each of \(i = 1, 2 \) there exists a unique \(\tilde{\alpha}_i : I \to \mathbb{R} \) for
30. Let A be a subspace of X, and $i: A \to X$ the inclusion map. Recall that a retraction $r: X \to A$ is a map such that $r \circ i = id_A$. Define r to be a deformation retraction if there is a homotopy $F: id_X \simeq i \circ r$ with $F(a, t) = a$ for all t and all $a \in A$. (Note: this is sometimes called a strong deformation retraction.) If there exists a deformation retraction from X to A, we say that A is a deformation retract of X.

1. Show that each $X \times \{t_0\}$ is a deformation retract of $X \times I$ (most of it is just showing that each t_0 is a deformation retract of I).

A deformation retract of I to $\{t_0\} \subset I$ is defined by $R(t, s) = (1 - s)t + st_0$.

Now, define $F: X \times I \to X$ by $F((x, t), s) = (x, R(t, s))$.

2. Show that the center circle of a Möbius band is a deformation retract of the Möbius band.

Regard the Möbius band M as the square $I \times I$ with identifications $(0, y) \sim (1, 1 - y)$. Note that the center circle is the subset $(I \times \{1/2\})/(0, 1/2) \sim (1, 1/2)$. Define a deformation retraction $F: I \times I \to I \times I$ by $F((x, y), t) = (x, (1 - t)y + t/2)$. This is a deformation retraction of $I \times I$ to $I \times \{1/2\}$.

To check that it produces a well-defined map on $M \times I$, we observe that $F((0, y), t) = (0, (1 - t)y + t/2) \sim (1, 1 - (1 - t)y - t/2) = (1, (1 - t)(1 - y) + t/2) = F((1, 1 - y), t)$ for all t, y. So F preserves identified points and therefore it induces a deformation retraction $F: M \times I \to M$ onto the center circle.
3. Show that if A is a deformation retract of X, then $i_\# : \pi_1(A, a_0) \to \pi_1(X, a_0)$ is an isomorphism for each basepoint $a_0 \in A$.

We will show that $i_\# : \pi_1(A, a_0) \to \pi_1(X, a_0)$ is an isomorphism. We have $id_A = r \circ i$, so $id_{\pi_1(A, a_0)} = r_\# \circ i_\#$, showing that $i_\#$ is injective. To see that $i_\#$ is surjective, let $\langle \alpha \rangle \in \pi_1(X, a_0)$. Define $G : I \times I \to X$ by $G(t, s) = F(\alpha(t), s)$. Then $G(t, 0) = F(\alpha(t), 0) = \alpha(t)$, $G(0, s) = F(\alpha(0), s) = F(a_0, s) = a_0$ and similarly $G(1, s) = a_0$, and $G(t, 1) = F(\alpha(t), 1) = i \circ r(\alpha(t)) \in A$. Since $r \circ \alpha(t) \in A$, $i^{-1} \circ r \circ \alpha(t)$ is defined. Letting $\beta = i^{-1} \circ r \circ \alpha$, we have $i_\#(\langle \beta \rangle) = \langle i \circ \beta \rangle = \langle i \circ i^{-1} \circ r \circ \alpha \rangle = \langle r \circ \alpha \rangle = \langle \alpha \rangle$.