8. (2/1) Suppose that \(h_0, h_1: X \rightarrow Y \) are isotopic. Prove that if \(g: Y \rightarrow Z \) is a homeomorphism, then \(g \circ h_0 \simeq g \circ h_1 \). Prove that if \(k: Z \rightarrow X \) is a homeomorphism, then \(h_0 \circ k \simeq h_1 \circ k \).

Let \(h_t \) be the isotopy. Each \(g \circ h_t \) is a homeomorphism, so \(g \circ h_t \) defines an isotopy from \(g \circ h_0 \) to \(g \circ h_1 \), and similarly \(h_t \circ k \) defines an isotopy from \(h_0 \circ k \) to \(h_1 \circ k \).

If one wishes to worry about the continuity, just note that the isotopy \(g \circ h_t \) is the composition of the map \(X \times I \rightarrow Y \times I \), defined by sending \((x, t)\) to \((h_t(x), t)\) (which is continuous since \(h_t \) is an isotopy) and the map \(g \circ \pi_1: Y \times I \rightarrow Z \).

9. (2/1) An imbedding \(j: I \rightarrow I \) is called order-preserving if \(j(0) < j(1) \), otherwise it is called order-reversing.

1. Prove that if \(j \) is order-preserving, then \(j(x_1) < j(x_2) \) whenever \(x_1 < x_2 \).

Suppose that \(x_1 < x_2 \) but \(j(x_1) > j(x_2) \). If \(j(0) < j(x_2) \), then the Intermediate Value Theorem applied to the interval \([0, x_1]\) produces \(c < x_1 \) with \(j(c) = j(x_2) \). If \(j(x_2) < j(0) < j(x_1) \), then the Intermediate Value Theorem applied to the interval \([x_1, x_2]\) produces \(c > x_1 \) with \(j(0) = j(c) \). If \(j(x_1) < j(0) \), then the Intermediate Value Theorem applied to the interval \([x_2, 1]\) produces \(c > x_2 \) with \(j(x_1) = j(c) \). In any case, we contradict the fact that \(j \) is an imbedding.

2. Prove that there are exactly two isotopy classes of imbeddings of \(I \) into \(I \), by showing that \(j_0, j_1: I \rightarrow I \) are isotopic if and only if they are both order-preserving or both order-reversing.

Suppose first that \(j_0 \) and \(j_1 \) are both order-preserving. Define \(j: I \times I \rightarrow I \) by \(j(x, t) = (1 - t)j_0(t) + tj_1(t) \). Since \(j \) is clearly continuous, and \(j(x, 0) = j(0) \) and \(j(x, 1) = j(1) \), it suffices to show that each \(j_i \) is injective. Then, since \(I \) is compact Hausdorff, we will know automatically that each \(j_i \) is an imbedding, so \(j \) will be an isotopy of imbeddings from \(j_0 \) to \(j_1 \).

By the previous part of the problem, we know that if \(x_1 < x_2 \), then \(j_0(x_1) < j_0(x_2) \) and \(j_1(x_1) < j_1(x_2) \). Suppose that for some \(t \) and some \(x_1 < x_2 \) we have \(j_t(x_1) = j_t(x_2) \). Using the definition of \(j_t \) shows that \((1 - t)(j_0(x_2) - j_0(x_1)) = -t(j_1(x_2) - j_1(x_1)) \). This is a contradiction, since the left-hand side is positive and the right-hand side is negative.

Suppose now that \(j_0 \) and \(j_1 \) are both order-reversing. Let \(\rho: I \rightarrow I \) be the reflection homeomorphism defined by \(\rho(x) = 1 - x \). Then \(j_0 \circ \rho \) and \(j_1 \circ \rho \) are order-preserving, so the previous case shows that \(j_0 \circ \rho \) and \(j_1 \circ \rho \) are isotopic. Problem 8 shows that \(j_0 \circ \rho \circ j_0 \circ \rho \) and \(j_1 \circ \rho \circ \rho \) are isotopic. Since \(\rho \circ \rho = id_I \), this shows that \(j_0 \) and \(j_1 \) are isotopic.

Finally, we must show that if \(j_0 \) is order-preserving and \(j_1 \) is order-reversing, then \(j_0 \) is not isotopic to \(j_1 \). If \(j_t \) were an isotopy, then the Intermediate Value Theorem applied to the function \(j_t(0) - j_t(1) \) produces a \(t_0 \) with \(j_{t_0}(0) = j_{t_0}(1) \), contradicting the fact that \(j_{t_0} \) is an imbedding.
10. (2/1) Prove the Disk Lemma for $n = 1$ and $M = I$. That is, prove that if $j_1, j_2 : I \to I$ are imbeddings with image in the interior of I, then j_1 is ambiently isotopic to either j_2 or $j_2 \circ \rho$. Hint: this follows quickly from the fact that any two homeomorphisms of I are isotopic. Compose j_1 and/or j_2 by ρ to assume that both are order preserving. Extend the homeomorphism $j_2 \circ j_1^{-1} : j_1(I) \to j_2(I)$ to an order-preserving homeomorphism $h : I \to I$, by using linear maps on $I - j_1(I)$. Now make use of the fact that id_I and h are isotopic.

Assume first that both j_1 and j_2 are order-preserving. We have a homeomorphism $j_2 \circ j_1^{-1} : j_1(I) \to j_2(I)$. We extend this to a homeomorphism $h : I \to I$ using order-preserving linear homeomorphisms from $[0, j_1(0)]$ to $[0, j_2(0)]$ and from $[j_1(1), 1]$ to $[j_2(1), 1]$. Explicitly, for $x \in [0, j_1(0)]$ put $h(x) = xj_1(0)/j_2(0)$ (using the fact that both $j_1(0), j_2(0) > 0$, and for $x \in [j_1(1), 1]$ put $h(x) = 1 - j_2(1) + (x - j_1(1))/(-j_1(1))$ (using the fact that $j_1(1), j_2(1) < 1$). Since h is an order-preserving homeomorphism, there is an isotopy H from id_I to h. Then, $H_0 = id_I$ and $H_1 \circ j_1 = h \circ j_1 = j_2 \circ j_1^{-1} \circ j_1 = j_2$, showing that j_1 and j_2 are ambiently isotopic.

11. (2/1) A compact (connected) surface F is called planar if $F \neq S^2$ and F can be imbedded into S^2. Show that if F_1 and F_2 are planar, then the connected sum $F_1 \# F_2$ is planar. Hint: Let $D_1 \subset F_1$ and $D_2 \subset F_2$ be admissible disks. Use the Disk Lemma to show that there is an imbedding of F_1 in S^2 that carries D_1 to the upper hemisphere, and there is an imbedding of F_2 in S^2 that carries D_2 to the lower hemisphere.

Fix imbeddings $f_1 : F_1 \to S^2$ and $f_2 : F_2 \to S^2$. Let $i_+: D^2 \to S^2$ be the imbedding $i_+(x,y) = (x, y, \sqrt{1 - x^2 - y^2})$, and let $i_- : D^2 \to S^2$ be the imbedding $i_-(x,y) = (x, y, -\sqrt{1 - x^2 - y^2})$. Finally, let $i_1 : D^2 \to F_1$ and $i_2 : D^2 \to F_2$ be any (admissible) imbeddings. By the Disk Lemma, there are ambient isotopies J_1 and J_2 of S^2 with $(J_1)_1 \circ f_1 \circ i_1 = i_+ \circ \rho^1$ and $(J_2)_1 \circ f_2 \circ i_2 = i_- \circ \rho^2$, where each of ϵ_1 and ϵ_2 is either 0 or 1. Denote $(J_i)_1 \circ f_i$ by k_i. Notice that $i_+(D^2) = i_+ \circ \rho^1(D^2) = k_1(i_1(D^2))$, so $i_+(D^2)$ is in the interior of $k_1(F_1)$, and similarly $i_-(D^2)$ is in the interior of $k_2(F_2)$.

We may define $F_1 \# F_2$ using any (admissible) imbeddings of D^2 into F_1 and F_2, so assume it is defined using the imbeddings $j_1 = k_1^{-1} \circ i_+ : D^2 \to F_1$ and $j_2 = k_2^{-1} \circ i_- : D^2 \to F_2$. That is, let $F_1 \# F_2$ be the identification space obtained from the union of $F_1 - j_1(\text{int}(D^2))$ and $F_1 - j_1(\text{int}(D^2))$ by identifying $j_1(p)$ with $j_2(p)$ for each $p \in \partial D^2$. Now, $F_1 \# F_2 \neq S^2$, for if so then when we cut S^2 along ∂D^2, we obtain two D^2s, and then each of F_1 and F_2 would have to be S^2. It remains to show that $F_1 \# F_2$ can be imbedded in S^2. Define $f : F_1 \# F_2 \to S^2$ by $f(z) = k_1(z)$ for $z \in F_1 - j_1(\text{int}(D^2))$ and $f(z) = k_2(z)$ for $z \in F_2 - j_2(\text{int}(D^2))$. For $p \in \partial D^2$, we have $f(j_1(p)) = k_1 \circ j_1(p) = k_1 \circ k_1^{-1} \circ i_+(p) = i_+(p)$ and $f(j_2(p)) = k_2 \circ j_2(p) = k_2 \circ k_2^{-1} \circ i_-(x) = i_-(p)$. Since $i_+(p) = i_-(p)$ for $p \in \partial D^2$, this shows f is well-defined. It is continuous by gluing on closed sets, and is injective by construction. Since it is a continuous injection from a compact space into a Hausdorff space, it is an imbedding. Therefore $F_1 \# F_2$ is planar.