Math 5863 homework solutions

Instructions: All problems should be prepared for presentation at the problem sessions. If a problem has a due date listed, then it should be written up formally and turned in on the due date.

1. (1/18) The Klein bottle \(K \) can be constructed from two annuli \(A_1 \) and \(A_2 \) by identifying their boundaries in a certain way. For each of the three descriptions of \(K \) discussed in class (two Möbius bands with boundaries identified, the square with certain identifications on its boundary, and \(S^1 \times I \) with the two ends identified), make a drawing showing where \(A_1 \) and \(A_2 \) appear in \(K \).

2. (1/18) Two surfaces \(F_1 \) and \(F_2 \) can be constructed as follows. Start with \(S^1 \times I \), and remove the interior of a small disk \(D \) from the interior of \(S^1 \times I \). For \(F_1 \), identify each \((\theta, 0)\) with \((\theta, 1)\) and identify each point of \(\partial D \) with its antipodal point (that is, if \(\partial D \) is regarded as \(S^1 \), then \(v \) is identified with \(-v\)). For \(F_2 \), identify each \((\theta, 0)\) with \((\theta, 1)\) and identify each point of \(\partial D \) with its antipodal point.

 1. Make drawings illustrating each of \(F_1 \) and \(F_2 \). Notice that both are closed surfaces.
 2. Find three disjoint Möbius bands imbedded in \(F_1 \).
 3. Find three disjoint Möbius bands imbedded in \(F_2 \).

Actually, \(F_1 \) and \(F_2 \) are homeomorphic, although this may not be very easy to see.
3. (1/18) Let M and N be n-dimensional manifolds, and let U be an open subset of M. Suppose that $f: U \to N$ is a continuous injection. Prove that f takes open sets in U to open sets in N.

Solution 1: Let V be an open subset of U. It suffices to show that for any point $f(x)$, there exists an open set J in N with $f(x) \in J \subseteq f(V)$. Choose an open neighborhood $W_{f(x)}$ of $f(x)$ with $W_{f(x)}$ homeomorphic to \mathbb{R}^n. Choose an open neighborhood V_x of x with $V_x \approx \mathbb{R}^n$. Now $f^{-1}(W_{f(x)})$ is an open neighborhood of x, and f carries the open subset $f^{-1}(W_{f(x)}) \cap V \cap V_x$ of x by a continuous injection into $W_{f(x)}$. By Invariance of Domain, $J = f(f^{-1}(W_{f(x)}) \cap U \cap V_x)$ is open in $W_{f(x)}$, and hence in N, and $f(x) \in J \subseteq W_{f(x)}$.

Solution 2: Let V be open in U. It is an open subset of a manifold, hence is a manifold, so we may select a collection $\{V_\alpha\}$ of charts whose union is V. Let $\{W_\beta\}$ be a collection of charts whose union is N. We have

$$f(V) = \cup_\alpha f(V_\alpha) = (\cup_\alpha f(V_\alpha)) \cap (\cup_\beta W_\beta)$$

$$= \cup_\alpha (f(V_\alpha) \cap (\cup_\beta W_\beta)) = \cup_{\alpha, \beta} f(V_\alpha \cap f^{-1}(W_\beta))$$

Each $V_\alpha \cap f^{-1}(W_\beta)$ is open in V_α, so by Invariance of Domain its image $f(V_\alpha \cap f^{-1}(W_\beta))$ is an open subset of W_β, and hence is open in N. So $f(V)$ is a union of open subsets of N.