Math 5863 homework solutions

Instructions: All problems should be prepared for presentation at the problem sessions. If a problem has a due date listed, then it should be written up formally and turned in on the due date.

1. (1/18) The Klein bottle K can be constructed from two annuli A_1 and A_2 by identifying their boundaries in a certain way. For each of the three descriptions of K discussed in class (two Möbius bands with boundaries identified, the square with certain identifications on its boundary, and $S^1 \times I$ with the two ends identified), make a drawing showing where A_1 and A_2 appear in K.

- 2. (1/18) Two surfaces F_1 and F_2 can be constructed as follows. Start with $S^1 \times I$, and remove the interior of a small disk D from the interior of $S^1 \times I$. For F_1 , identify each $(\theta,0)$ with $(\theta,1)$ and identify each point of ∂D with its antipodal point (that is, if ∂D is regarded as S^1 , then v is identified with -v). For F_2 , identify each $(\theta,0)$ with $(\overline{\theta},1)$ and identify each point of ∂D with its antipodal point.
 - 1. Make drawings illustrating each of F_1 and F_2 . Notice that both are closed surfaces.
 - 2. Find three disjoint Möbius bands imbedded in F_1 .
 - 3. Find three disjoint Möbius bands imbedded in F_2 .

Actually, F_1 and F_2 are homeomorphic, although this may not be very easy to see.

3. (1/18) Let M and N be n-dimensional manifolds, and let U be an open subset of M. Suppose that $f: U \to N$ is a continuous injection. Prove that f takes open sets in U to open sets in N.

Solution 1: Let V be an open subset of U. It suffices to show that for any point f(x), there exists an open set J in N with $f(x) \in J \subseteq f(V)$. Choose an open neighborhood $W_{f(x)}$ of f(x) with $W_{f(x)}$ homeomorphic to \mathbb{R}^n . Choose an open neighborhood V_x of x with $V_x \approx \mathbb{R}^n$. Now $f^{-1}(W_{f(x)})$ is an open neighborhood of x, and f carries the open subset $f^{-1}(W_{f(x)}) \cap V \cap V_x$ of x by a continuous injection into $W_{f(x)}$. By Invariance of Domain, $J = f(f^{-1}(W_{f(x)}) \cap U \cap V_x)$ is open in $W_{f(x)}$, and hence in N, and $f(x) \in J \subseteq W_{f(x)}$.

Solution 2: Let V be open in U. It is an open subset of a manifold, hence is a manifold, so we may select a collection $\{V_{\alpha}\}$ of charts whose union is V. Let $\{W_{\beta}\}$ be a collection of charts whose union is N. We have

$$f(V) = \cup_{\alpha} f(V_{\alpha}) = (\cup_{\alpha} f(V_{\alpha})) \cap (\cup_{\beta} W_{\beta})$$
$$= \cup_{\alpha} (f(V_{\alpha}) \cap (\cup_{\beta} W_{\beta})) = \cup_{\alpha,\beta} f(V_{\alpha} \cap f^{-1}(W_{\beta}))$$

Each $V_{\alpha} \cap f^{-1}(W_{\beta})$ is open in V_{α} , so by Invariance of Domain its image $f(V_{\alpha} \cap f^{-1}(W_{\beta}))$ is an open subset of W_{β} , and hence is open in N. So f(V) is a union of open subsets of N.