Math 5863 homework

45. Let $p_E: (E, e_0) \to (B, b_0)$ be a covering map between path-connected, locally connected spaces. Let $f: S^1 \to B$ be continuous. Prove that there exists a map $F: \mathbb{R} \to E$ such that $p_E \circ F = f \circ p$, where $p: \mathbb{R} \to S^1$ is the usual covering map.

Since $\pi_1(\mathbb{R}) = \{1\}$, $(f \circ p)_{\#}(\pi_1(\mathbb{R})) \subseteq (p_E)_{\#}(\pi_1(E, e_0))$. Therefore there exists a lift $F \colon \mathbb{R} \to E$ of $f \circ p$, that is, $p_E \circ F = f \circ p$.

46. (4/21) Let X be path-connected. Prove that if $\pi_1(X)$ is finite, then any map from X to S^1 is homotopic to a constant map.

Let $f: X \to S^1$, so $f_\#: \pi_1(X, x_0) \to \pi_1(S^1, f(x_0)) \cong \mathbb{Z}$. Any homomorphism must take an element of finite order to an element of finite order (since if $g^n = 1$, then $(\phi(g))^n = \phi(g^n) = \phi(1) = 1$). The only element of finite order in \mathbb{Z} is the identity element 0, so $f_\#$ must take every element to 0. Therefore $f_\#(\pi_1(X, x_0)) \subseteq p_\#(\pi_1(\mathbb{R}, r_0))$ (where r_0 is any point with $p(r_0) = f(x_0)$). By the Lifting Criterion, there exists a lift $F: X \to \mathbb{R}$, and since \mathbb{R} is contractible, F is homotopic to a constant map c. Therefore $f = p \circ F \simeq p \circ c$, which is constant.

47. (4/21) Let $p:(E,e_0) \to (B,b_0)$ be a covering map between path-connected, locally connected spaces. Prove that if $p_{\#}: \pi_1(E,e_0) \to \pi_1(B,b_0)$ is surjective, then p is a homeomorphism.

Assume that $p_{\#}: \pi_1(E, e_0) \to \pi_1(B, b_0)$ is surjective. Then $id_B: B \to B$ satisfies $(id_B)_{\#}(\pi_1(B, b_0)) = \pi_1(B, b_0) \subseteq p_{\#}(\pi_1(E, e_0))$, so by the Lifting Criterion there exists a map $P: (B, b_0) \to (E, e_0)$ with $p \circ P = id_B$.

We will now show that $P \circ p = id_E$. We have $p \circ P \circ p = id_B \circ p = p$, so $P \circ p$ is a lift of p. Also, id_E is a lift of p. Since $P \circ p(e_0) = P(b_0) = e_0 = id_E(e_0)$, $P \circ p$ and id_E agree at a point. By the uniqueness of lifts, $P \circ p = id_E$.

We have shown that P is a two-sided continuous inverse of p, so p is a homeomorphism.

- 48. (4/21) Let $p: E \to B$ be a covering map, with B and E path-connected and locally path-connected. Let $\tau: E \to E$ be a map such that $p \circ \tau = p$. Such a τ is called a covering transformation.
 - 1. Observe that τ is a lift of p. Deduce that if if τ_1 and τ_2 are two covering transformations and $\tau_1(e) = \tau_2(e)$ for some $e \in E$, then $\tau_1 = \tau_2$; in particular if $\tau(e) = e$ for some point $e \in E$, then $\tau = id_E$.

By definition, a covering transformation $\tau \colon E \to E$ is a map such that $p \circ \tau = p$, which is what it means to say that τ is a lift of $p \colon E \to B$. Since any two lifts of any map that agree at a point are equal, this applies to any two covering transformations. Now id_E is a covering transformation, since $p \circ id_E = p$, so if $\tau(e) = e$, then $\tau(e) = id_E(e)$ and it follows that $\tau = id_E$.

2. Show that the set of covering transformations forms a group under the operation of composition.

First we show that τ must be a homeomorphism. Since $p = p \circ \tau$, we have $p_{\#}(\pi_1(E,\tau(e_0))) = (p \circ \tau)_{\#}(\pi_1(E,\tau(e_0)))$ so by the Lifting Criterion applied to the covering map $p \circ \tau \colon (E,e_0) \to (B,b_0)$ and the map $p \colon (E,\tau(e_0)) \to (B,b_0)$, there exists a lift $\sigma \colon (E,\tau(e_0)) \to (E,e_0)$. That is, $p = p \circ \tau \circ \sigma$. Since $\tau \circ \sigma \colon (E,\tau(e_0)) \to (E,\tau(e_0))$ is a lift of p and fixes the point $\tau(e_0)$, $\tau \circ \sigma = id_E$. Also, $p \circ \sigma \circ \tau = p \circ \tau \circ \sigma \circ \tau$ (since $p = p \circ \tau$), which equals $p \circ \tau$ (since $p = p \circ \tau \circ \sigma$), which equals $p \circ \tau$ (since $p = p \circ \tau \circ \sigma$), which equals $p \circ \tau$ is a continuous inverse for τ , so τ is a homeomorphism and its inverse is a covering transformation (which is also automatic since if $p = p \circ \tau$ then $p \circ \tau^{-1} = p \circ \tau \circ \tau^{-1} = p$).

The composition of covering transformations is a covering transformation, since if $p \circ \tau_1 = p \circ \tau_2 = p$ then $p \circ \tau_1 \circ \tau_2 = p \circ \tau_2 = p$, so composition is an associative operation on the set of covering transformations for which inverses and an identity element id_E exist.

3. Notice that for our examples of covering spaces of $S^1 \vee S^1$, a covering transformation corresponds to an automorphism of the graph which takes single arrows to single arrows, preserving direction, and double arrows to double arrows, preserving direction. Find four 4-fold coverings of $S^1 \vee S^1$ whose groups of covering transformations are respectively C_4 , $C_2 \times C_2$, C_2 , and $\{1\}$.

