Math 5863 homework solutions

37. Let X and Y be spaces, and give the set of continuous functions $\mathcal{C}(X, Y)$ the C-O topology. Show that if Y is Hausdorff, then $C(X, Y)$ is Hausdorff.

Let $f, g \in C(X, Y)$ with $f \neq g$. Then for some $x_{0} \in X, f\left(x_{0}\right) \neq g\left(x_{0}\right)$. Let U and V be disjoint open neighborhoods of $f\left(x_{0}\right)$ and $g\left(x_{0}\right)$ respectively. Then $f \in S\left(\left\{x_{0}\right\}, U\right)$ and $g \in S\left(\left\{x_{0}\right\}, V\right)$, and $S\left(\left\{x_{0}\right\}, U\right) \cap S\left(\left\{x_{0}\right\}, V\right)=\emptyset$ since no function can map x_{0} both into U and into V.
38. Let X and Y be spaces, and give the set of continuous functions $\mathcal{C}(X, Y)$ the $\mathrm{C}-\mathrm{O}$ topology. Prove that if A is a subspace of X, then the function $\mathcal{C}(X, Y) \rightarrow \mathcal{C}(A, Y)$ determined by sending f to $\left.f\right|_{A}$ is continuous.

Write $R: \mathcal{C}(X, Y) \rightarrow \mathcal{C}(A, Y)$ for the function determined by restriction. Consider any set $S_{A}(C, U) \subseteq \mathcal{C}(A, Y)$. Since C is a compact subset of A, it is a compact subset of X as well, so $S_{X}(C, U) \subseteq \mathcal{C}(X, Y)$ is defined. We have $R^{-1}\left(S_{A}(C, U)\right)=S_{X}(C, U)$, since a function $f: X \rightarrow Y$ carries C into U if and only if its restriction $R(f)$ does. So if $\cap_{i=1}^{n} S_{A}\left(C_{i}, U_{i}\right)$ is any basic open set in $\mathcal{C}(A, Y)$, we have $R^{-1}\left(\cap_{i=1}^{n} S_{A}\left(C_{i}, U_{i}\right)\right)=\cap_{i=1}^{n} R^{-1}\left(S_{A}\left(C_{i}, U_{i}\right)\right)$, which is a basic open set in $\mathcal{C}(X, Y)$.
39. Let X, Y, and Z be spaces, with Y locally compact Hausdorff, and give all sets of continuous functions the C-O topology. Define the composition function $C(f, g): \mathcal{C}(X, Y) \times$ $\mathcal{C}(Y, Z) \rightarrow \mathcal{C}(X, Z)$ by $C(f, g)=g \circ f$. Prove that C is continuous. (Take as known the fact that if K is a compact subset of a locally compact Hausdorff space, and W is an open set containing K, then there exists an open set V with \bar{V} compact and $K \subseteq V \subseteq \bar{V} \subseteq W$.

Suppose that $C(f, g) \in S(C, U)$. Now $f(C)$ is a compact set in Y, and $g^{-1}(U)$ is an open subset of Y containing $f(C)$. Since Y is locally compact Hausdorff, there exists an open set $V \subseteq Y$ with \bar{V} compact and $f(C) \subseteq V \subseteq \bar{V} \subseteq g^{-1}(U)$. We have $f \in S(C, V) \subseteq \mathcal{C}(X, Y)$ and $g \in S\left(\bar{V}, g^{-1}(U)\right) \subseteq \mathcal{C}(Y, Z)$, and $C(S(C, V) \times$ $S\left(\bar{V}, g^{-1}(U)\right) \subseteq S(C, U)$. Now, suppose that $\cap_{i=1}^{n} S\left(C_{i}, U_{i}\right)$ is any basic open set in $\mathcal{C}(X, Z)$, and that $C(f, g) \in \cap_{i=1}^{n} S\left(C_{i}, U_{i}\right)$. Then with notation as before, $(f, g) \in \cap_{i=1}^{n}\left(S\left(C_{i}, V_{i}\right) \times S\left(\bar{V}_{i}, g^{-1}(U)\right) \subseteq C^{-1}\left(\cap_{i=1}^{n} S\left(C_{i}, U_{i}\right)\right)\right.$. This shows that C is continuous.

