Mathematics 2423-001H Name (please print)
Examination III
April 28, 2005

Instructions: The exam might be on the long side, so avoid spending a lot of time on any individual problem
unless you have completed all the other problems that you definitely know how to do. That is, grab easy points
first.

I Let sin~!(z) be the inverse of the function f(x) = sin(z), —7/2 <z < 7/2.
(10)
1. Find the domain and range of sin~!(x).

Its domain is the range of f(x), that is, —1 < x < 1. Its range is the domain of f(z), that is,
—7/2 <z <m/2

2. Sketch the graph of sin~!(x).

)

3. Use right triangles to simplify the expressions cos(sin™!(x)) and cot (sin_1 (
x

sin~!(z) is an angle in a right triangle whose opposite leg is  and hypotenuse is 1. By the Pythagorean
Theorem, the adjacent leg has length /1 — 22, giving cos(sin™!(z)) = 1 — 22.

.1 <\/ac +2
Sin

X

) is an angle in a right triangle whose opposite leg is v/ + 2 and hypotenuse is x. By

2
the Pythagorean Theorem, the adjacent leg has length /22 — = — 2, giving cot (sin_l <W>> -

Vaz —x -2/ +2.

4. Use the chain rule to calculate the derivative of sin~!(z), and write the corresponding indefinite integral

formula.
Differentiating the equation sin(sin~!(x)) = z, we obtain cos(sin~!(z)) - d—(sinfl(w)) = 1, and there-
x
d
fore — (sin~!(z)) = 1/cos(sin"!(x)) = 1/v/1 —22. The corresponding indefinite integral formula is

dzx

1
——dx =sin"'(z) + C.
/ V1 — 22 (@)
II. On one z-y coordinate system, sketch the graphs of sinh(x) and cosh(z). Explain why (cosh(t),sinh(?)) is
(10)  a point on a hyperbola, and on a second z-y coordinate system sketch that hyperbola and a typical point
of the form (cosh(t),sinh(¢)), indicating what ¢ equals geometrically.

Since cosh?(t) — sinh?(t) = 1, the point (cosh(t),sinh(t)) satisfies the equation 2? — 3? = 1, whose
graph is a hyperbola. Since cosh(xz) > 0, the point (cosh(t),sinh(¢)) lies on the component of the
hyperbola with = > 0. The region bounded by the straight line from the origin to (cosh(t), sinh(t)),
the hyperbola, and the z-axis has area |t|/2.

III.  Use ’'Hopital’s rule to calculate the following limits:
(12)

1. lim .
2—0 tan(qz)

tan(pz)

tanpr) _psec?(pr) _p-l _p
a—0tan(qz) z—0psec(qr) q-1 ¢
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2. lim sin(x) In(x).

z—0

1 .
lim sin(z) In(z) = lim In(z) = li V= = lim _sin(z) tan(z) = —1-0=0.
z—0 z—0 CSC(H?) z—0 — CSC(.%') COt(l’) z—0

3. lin%):zﬁ.

In(z) 1
1 x

7 —= _1,.-3/2
lim2V? = lime™@®) = limeV?n(®@) = lime vZ = lime 2% / = lime 2v® = ¢0 = 1.
z—0 z—0 z—0 z—0 z—0 z—0
IV.  Calculate the following integrals.
(15)
L. /:cQsin(x)dx
Using integration by parts with v = 22, du = 2zdz, dv = sin(z)dr, and v = — cos(z), we find

that /ac2 sin(z) dr = —x%cos(z) + /21: cos(z)dx. Integration by parts with u = 2z, du = 2dx,
dv = cos(z) dr, and v = sin(x) makes this equal to —a? cos(x) + 2z sin(z) —/2 sin(z) do = —% cos(z) +

2z sin(z) + 2 cos(x) + C.

2. /sin3(m$) dx

/ sin® (ma) da = / (1—cos?(ma) sin(mz) dz = / sin(ma) dz— / cos?(ma) sin(ma) dz = —% cos(ma)+

1
Im cos®(mx) + C.

3 / sin(z) cos?(z) dx

1 1 1 1 1
/sinQ(aj) cos?(z) dz = /2(1 — cos(2x)) - 5(1 + cos(2z)) dz = /4(1 — cos?(2z)) dx = /4(1 - 5(1 +
1 1 1
cos(4z))) dx = /8 —3 cos(4x) dx = % ~ 33 sin(4z) + C.
V. Calculate the following integral by using the substitution ¢ = v/2tan(f). Express the answer in terms of ¢:
(10) t3 Ut
VEZ+2

s an® sec? an’

2\@/(8602(9) — 1) sec(0) tan(f) df = Qﬂ/(uz — 1) du, where u = sec(#), thus the integral equals

2v/2 2v/2 2v/2
\!’LLS - \—f +C = \!tang(e) —2y/2tan(f) + C. Now, t = v/2tan(f), so tan(f) = % Us-
u
ing a right triangle with one angle equal to 6, the opposite leg ¢t and adjacent leg /2, we find
that sec(8) = V& +2/v2, so in t f ¢ the intogral is 2Y2 (D2, sVET2
at sec(d) = , 80 in terms o e integral is —————=F— — =
s 3 2V2 V2
£2 1 9)3/2
u—2\/t2+2+0.

3
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VI.  For each of the following rational functions, write out the partial fraction decomposition. Do not solve for
(12)  unknown values of the coefficients.

x
1.
zt—1
? x3 B x3 _Ax+B+ C n D
-1 (224+1)(22-1) (@2+D)+D@—-1) (2+1) z+1 z-1
1
2. ———
x4+ 222 4+
1 B 1 1 _A, B
B +222 4+ x@2+2r+1) x@+1)2 2z x4+l (z+1)2
2
3. "
23 +1

We first observe that © = —1 is a root of 23 + 1, so « + 1 is a factor. Dividing ® + 1 by = + 1 gives
23 +1= (22 —2+1)(z+ 1) (or if one knows the general factorization formula 2" +1 = (z + 1)(z" ' —

2" 2 42" 3 — ... 4 (=1)""1) from early in our course, it applies here with n = 3). Since 22 —x +1 has
discriminant b? — 4¢ = —3, it is irreducible, so we have
z? z? Az +B C

Pl (@21 D@tl) 221l o4l

VIL Fvaluate [ S¢C(0)tan*(6) (

(6)' V9 — tan?(
2
u2—a2+%ln\u+\/u2—a2|+0

d9 by using one of the following formulas from the table of integrals:

u? U
1. /du:
Vuz — a2 2

u u+3a 3a? a—u
2. | ——du=— \/Zau—u2+cos_1( )+C
/\/2au—u2 2 2 a

u? u a? u
__ > 2 _ .2 . e
3./ a2_u2du— 5 Va?—u + 5 sin (a)—i—C

u
4. /md 15b3(8a +3b2 2—4abu)\/a+bu+c

Substituting u = tan(f), du = sec?(#) df, the integral becomes / du, so the third formula applies

tan(0)

9 tan? (9)4—281@?0)) +C

with a = 3. It gives the integral to be —
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VIIL. Suppose that f(x) is a function whose third derivative f(®(z) exists and is continuous. Define Ey(h) by
(12)  the formula f(a+ h) = f(a) + f'(a)h + 5 f"(a)h? + Ea(h).

h
1. Use integration by parts to calculate that Ea(h) = / 2(h—1)2 f3(a +1)dt.
0

"1 1 hooh
/ —(h—t)? f<3)(a+t)dt= —(h=1)2 fP(a+1) +/ (h—1t) fP(a+t)dt
0 2 0 0

2!

2 2
:—%f(z)(a)—i-( "(a+1) /f (a+t)d :—%f(z)(a)—hf’(a)Jrf(aJrh)—f(a)zEz(h)

2. Let m be the minimum and M the maximum of f®) on the interval [a,a + h]. Show that %h“q’ m < Es(h) <
1713 ‘
=h° M.
3!

Since m < f(3)(a—|—t) < M for 0 <t < h, we have
hq hq hq
/(h—t)zmdtg/ —(h—t)? f(3>(a+t)dt§/ —(h—t)®> mdt .
) 2! ) 2! ) 2!

h
Since / %(h —t)2dt = 3, , the previous inequalities say
0

h3 h3
mgy < < Es(h) < M? .
3. Use the Intermediate Value Theorem to show that there exists ¢ in [a,a + h] so that Ea(h) = 3 f ®)(¢) h3.

The previous inequalities say that

3!
so the Intermediate Value Theorem says there exists a ¢ with a < ¢ < a+h for which f®)(c) = % Es(h).

That is, Ex(h) = & f®)(c) h3



