
Mathematics 2423-001H
Examination III
April 28, 2005

Name (please print)

Instructions: The exam might be on the long side, so avoid spending a lot of time on any individual problem
unless you have completed all the other problems that you definitely know how to do. That is, grab easy points
first.

I.
(10)

Let sin−1(x) be the inverse of the function f(x) = sin(x), −π/2 ≤ x ≤ π/2.

1. Find the domain and range of sin−1(x).

Its domain is the range of f(x), that is, −1 ≤ x ≤ 1. Its range is the domain of f(x), that is,
−π/2 ≤ x ≤ π/2.

2. Sketch the graph of sin−1(x).

3. Use right triangles to simplify the expressions cos(sin−1(x)) and cot
(

sin−1

(√
x + 2
x

))
.

sin−1(x) is an angle in a right triangle whose opposite leg is x and hypotenuse is 1. By the Pythagorean
Theorem, the adjacent leg has length

√
1− x2, giving cos(sin−1(x)) =

√
1− x2.

sin−1

(√
x + 2
x

)
is an angle in a right triangle whose opposite leg is

√
x + 2 and hypotenuse is x. By

the Pythagorean Theorem, the adjacent leg has length
√

x2 − x− 2, giving cot
(

sin−1

(√
x + 2
x

))
=

√
x2 − x− 2/

√
x + 2.

4. Use the chain rule to calculate the derivative of sin−1(x), and write the corresponding indefinite integral
formula.

Differentiating the equation sin(sin−1(x)) = x, we obtain cos(sin−1(x)) · d

dx
(sin−1(x)) = 1, and there-

fore
d

dx
(sin−1(x)) = 1/ cos(sin−1(x)) = 1/

√
1− x2. The corresponding indefinite integral formula is∫

1√
1− x2

dx = sin−1(x) + C.

II.
(10)

On one x-y coordinate system, sketch the graphs of sinh(x) and cosh(x). Explain why (cosh(t), sinh(t)) is
a point on a hyperbola, and on a second x-y coordinate system sketch that hyperbola and a typical point
of the form (cosh(t), sinh(t)), indicating what t equals geometrically.

Since cosh2(t) − sinh2(t) = 1, the point (cosh(t), sinh(t)) satisfies the equation x2 − y2 = 1, whose
graph is a hyperbola. Since cosh(x) > 0, the point (cosh(t), sinh(t)) lies on the component of the
hyperbola with x > 0. The region bounded by the straight line from the origin to (cosh(t), sinh(t)),
the hyperbola, and the x-axis has area |t|/2.

III.
(12)

Use l’Hôpital’s rule to calculate the following limits:

1. lim
x→0

tan(px)
tan(qx)

.

lim
x→0

tan(px)
tan(qx)

= lim
x→0

p sec2(px)
p sec2(qx)

=
p · 1
q · 1

=
p

q
.
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2. lim
x→0

sin(x) ln(x).

lim
x→0

sin(x) ln(x) = lim
x→0

ln(x)
csc(x)

= lim
x→0

1/x

− csc(x) cot(x)
= lim

x→0
−sin(x)

x
tan(x) = −1 · 0 = 0.

3. lim
x→0

x
√

x.

lim
x→0

x
√

x = lim
x→0

eln(x
√

x) = lim
x→0

e
√

x ln(x) = lim
x→0

e

ln(x)
1√
x = lim

x→0
e

1
x

−1
2x−3/2

= lim
x→0

e−2
√

x = e0 = 1.

IV.
(15)

Calculate the following integrals.

1.
∫

x2 sin(x) dx

Using integration by parts with u = x2, du = 2x dx, dv = sin(x) dx, and v = − cos(x), we find

that
∫

x2 sin(x) dx = −x2 cos(x) +
∫

2x cos(x) dx. Integration by parts with u = 2x, du = 2 dx,

dv = cos(x) dx, and v = sin(x) makes this equal to −x2 cos(x)+2x sin(x)−
∫

2 sin(x) dx = −x2 cos(x)+

2x sin(x) + 2 cos(x) + C.

2.
∫

sin3(mx) dx∫
sin3(mx) dx =

∫
(1−cos2(mx) sin(mx) dx =

∫
sin(mx) dx−

∫
cos2(mx) sin(mx) dx = − 1

m
cos(mx)+

1
3m

cos3(mx) + C.

3.
∫

sin2(x) cos2(x) dx∫
sin2(x) cos2(x) dx =

∫
1
2
(1 − cos(2x)) · 1

2
(1 + cos(2x)) dx =

∫
1
4
(1 − cos2(2x)) dx =

∫
1
4
(1 − 1

2
(1 +

cos(4x))) dx =
∫

1
8
− 1

8
cos(4x) dx =

x

8
− 1

32
sin(4x) + C.

V.
(10)

Calculate the following integral by using the substitution t =
√

2 tan(θ). Express the answer in terms of t:∫
t3√

t2 + 2
dt.

∫
t3√

t2 + 2
dt =

∫
2
√

2 tan3(θ)√
2 tan2(θ) + 2

√
2 sec2(θ) dθ =

∫
2
√

2 sec2(θ) tan3(θ)√
2 sec(θ)

√
2 dθ =

∫
2
√

2 sec(θ) tan3(θ) dθ =

2
√

2
∫

(sec2(θ) − 1) sec(θ) tan(θ) dθ = 2
√

2
∫

(u2 − 1) du, where u = sec(θ), thus the integral equals

2
√

2
3

u3 − 2
√

2
u

+ C =
2
√

2
3

tan3(θ) − 2
√

2 tan(θ) + C. Now, t =
√

2 tan(θ), so tan(θ) = t√
2
. Us-

ing a right triangle with one angle equal to θ, the opposite leg t and adjacent leg
√

2, we find

that sec(θ) =
√

t2 + 2/
√

2, so in terms of t the integral is
2
√

2
3

(t2 + 2)3/2

2
√

2
− 2

√
2
√

t2 + 2√
2

+ C =

(t2 + 2)3/2

3
− 2

√
t2 + 2 + C.
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VI.
(12)

For each of the following rational functions, write out the partial fraction decomposition. Do not solve for
unknown values of the coefficients.

1.
x3

x4 − 1

x3

x4 − 1
=

x3

(x2 + 1)(x2 − 1)
=

x3

(x2 + 1)(x + 1)(x− 1)
=

Ax + B

(x2 + 1)
+

C

x + 1
+

D

x− 1

2.
1

x3 + 2x2 + x

1
x3 + 2x2 + x

=
1

x(x2 + 2x + 1)
=

1
x(x + 1)2

=
A

x
+

B

x + 1
+

C

(x + 1)2

3.
x2

x3 + 1

We first observe that x = −1 is a root of x3 + 1, so x + 1 is a factor. Dividing x3 + 1 by x + 1 gives
x3 + 1 = (x2 − x + 1)(x + 1) (or if one knows the general factorization formula xn + 1 = (x + 1)(xn−1 −
xn−2 + xn−3 − · · ·+ (−1)n−1) from early in our course, it applies here with n = 3). Since x2 −x + 1 has
discriminant b2 − 4c = −3, it is irreducible, so we have

x2

x3 + 1
=

x2

(x2 − x + 1)(x + 1)
=

Ax + B

x2 − x + 1
+

C

x + 1

VII.
(6)

Evaluate
∫

sec2(θ) tan2(θ)√
9− tan2(θ)

dθ by using one of the following formulas from the table of integrals:

1.
∫

u2

√
u2 − a2

du =
u

2

√
u2 − a2 +

a2

2
ln |u +

√
u2 − a2|+ C

2.
∫

u2

√
2au− u2

du = −u + 3a

2

√
2au− u2 +

3a2

2
cos−1

(
a− u

a

)
+ C

3.
∫

u2

√
a2 − u2

du = −u

2

√
a2 − u2 +

a2

2
sin−1

(
u

a

)
+ C

4.
∫

u2

√
a + bu

du =
2

15b3
(8a2 + 3b2u2 − 4abu)

√
a + bu + C

Substituting u = tan(θ), du = sec2(θ) dθ, the integral becomes
∫

u2

√
9− u2

du, so the third formula applies

with a = 3. It gives the integral to be −tan(θ)
2

√
9− tan2(θ) +

9
2

sin−1

(
tan(θ)

3

)
+ C
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VIII.
(12)

Suppose that f(x) is a function whose third derivative f (3)(x) exists and is continuous. Define E2(h) by
the formula f(a + h) = f(a) + f ′(a)h + 1

2!f
′′(a)h2 + E2(h).

1. Use integration by parts to calculate that E2(h) =
∫ h

0

1
2!(h− t)2 f (3)(a + t) dt.

∫ h

0

1
2!

(h− t)2 f (3)(a + t) dt =
1
2
(h− t)2 f (2)(a + t)

∣∣∣∣h
0

+
∫ h

0
(h− t) f (2)(a + t) dt

= −h2

2
f (2)(a) + (h− t) f ′(a + t)

∣∣∣∣h
0

+
∫ h

0
f ′(a + t) dt = −h2

2
f (2)(a)− hf ′(a) + f(a + h)− f(a) = E2(h)

2. Let m be the minimum and M the maximum of f (3) on the interval [a, a + h]. Show that 1
3!h

3 m ≤ E2(h) ≤
1
3!h

3 M .

Since m ≤ f (3)(a + t) ≤ M for 0 ≤ t ≤ h, we have∫ h

0

1
2!

(h− t)2 m dt ≤
∫ h

0

1
2!

(h− t)2 f (3)(a + t) dt ≤
∫ h

0

1
2!

(h− t)2 m dt .

Since
∫ h

0

1
2!(h− t)2 dt = h3

3! , the previous inequalities say

m
h3

3!
≤ E2(h) ≤ M

h3

3!
.

3. Use the Intermediate Value Theorem to show that there exists c in [a, a + h] so that E2(h) = 1
3!f

(3)(c) h3.

The previous inequalities say that

m ≤ 3!
h3

E2(h) ≤ M

so the Intermediate Value Theorem says there exists a c with a < c < a+h for which f (3)(c) = 3!
h3 E2(h).

That is, E2(h) = 1
3! f (3)(c) h3.


