I. Use the telescoping sum $\sum_{k=1}^{n} k^2 - (k-1)^2$ to obtain the formula $\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$.

$$n^{2} = \sum_{k=1}^{n} k^{2} - (k-1)^{2} = \sum_{k=1}^{n} 2k - 1 = 2\sum_{k=1}^{n} k - \sum_{k=1}^{n} 1 = 2\sum_{k=1}^{n} k - n.$$
 Solving for $\sum_{k=1}^{n} k$, we find that $\sum_{k=1}^{n} k = \frac{1}{2}(n^{2} + n) = \frac{n(n+1)}{2}.$

II. Calculate the Riemann sum for the following partition and function, using left-hand endpoints as the (5) sample points x_i^* : the function is $f(x) = x^2/2$, the interval is [1, 10], and the partition is $x_1 = 2$, $x_2 = 4$, and $x_3 = 9$.

$$\sum_{i=1}^{4} f(x_i^*) \,\Delta x_i = f(1) \cdot 1 + f(2) \cdot 2 + f(4) \cdot 5 + f(9) \cdot 1 = \frac{1}{2} + 4 + 40 + \frac{81}{2} = 85.$$

III. Give an explicit example of a partition of the interval [0, 10] that has mesh π. (3) π, 4, 5, 6, 7, 8, 9, or π, 6, 8, etc.

IV. Let f(x) be the function defined by f(x) = 0 for $0 \le x < 5$ and f(x) = 1 for $5 \le x \le 10$. Consider the (5) partition of [0, 10] defined by $x_1 = 3$, $x_2 = 7$. By making two different choices of the points x_i^* , show that both of the numbers 3 and 7 are Riemann sums for this function and this partition of [0, 10].

For the first partition, choose (for example) $x_1^* = 0$, $x_2^* = 3$, and $x_3^* = 10$, giving the Riemann sum $f(x_1^*) \cdot \Delta x_1 + f(x_2^*) \cdot \Delta x_2 + f(x_3^*) \cdot \Delta x_3 = 0 + 0 + 1 \cdot 3 = 3$. For the second, we could take $x_1^* = 0$, $x_2^* = 7$, and $x_3^* = 10$, giving the Riemann sum $f(x_1^*) \cdot \Delta x_1 + f(x_2^*) \cdot \Delta x_2 + f(x_3^*) \cdot \Delta x_3 = 0 + 1 \cdot 4 + 1 \cdot 3 = 7$.

V. Write the following limit as an integral, but do not try to calculate the integral: $\lim_{n \to \infty} \sum_{i=1}^{n} \frac{\pi}{6n} \tan\left(\frac{i\pi}{6n}\right).$

These are Riemann sums for (among other possibilities) the equal-length partition of $[a, b] = [0, \pi/6]$, with $\Delta x_i = \frac{\pi/6}{n} = \frac{\pi}{6n}$, $f(x) = \tan(x)$ and $x_i^* = i \cdot \frac{\pi}{6n}$. So the limit is $\int_0^{\pi/6} \tan(x) \, dx$.

VI. State the Fundamental Theorem of Calculus (both parts, of course).

(6)

Let f be a continuous function on
$$[a, b]$$
. Then $\frac{d}{dx} \int_a^x f(t) dt = f(x)$. If $F' = f$ on $[a, b]$, then $\int_a^b f(x) dx = F(b) - F(a)$.

VII. State the Mean Value Theorem for Integrals.(3)

Let f be a continuous function on [a, b]. Then there exists a number c between a and b for which $\int_a^b f(x) dx = f(c)(b-a)$.

VIII. Calculate the following derivatives: $\frac{d}{dx} \int_{1}^{x} \frac{\sin(t)}{t} dt$, $\frac{d}{dx} \int_{1}^{t^3} \frac{\sin(t)}{t} dt$, $\frac{d}{dx} \int_{t^2}^{t^3} \frac{\sin(t)}{t} dt$. (6)

Direct application of the FTC(a) shows that the derivative of the first is $\frac{\sin(x)}{x}$. For the second, the Chain Rule shows that the derivative is $\frac{\sin(x^3)}{x^3} \cdot \frac{d}{dx}(x^3) = \frac{3x^2\sin(x^3)}{x^3} = \frac{3\sin(x^3)}{x}$. For the last one, we write the integral as $\int_{t^2}^1 \frac{\sin(t)}{t} dt + \int_1^{t^3} \frac{\sin(t)}{t} dt = \int_1^{t^3} \frac{\sin(t)}{t} dt - \int_1^{t^2} \frac{\sin(t)}{t} dt$, and using the Chain Rule as in the second case we find the derivative to be $\frac{3\sin(x^3)}{x} - \frac{2\sin(x^2)}{x}$.

IX. Verify that
$$\int (x^2 - 1)^{3/2} dx$$
 is **not** $\frac{2}{5}(x^2 - 1)^{5/2} + C$
(3)

The derivative of $\frac{2}{5}(x^2-1)^{5/2} + C$ is $(x^2-1)^{3/2} \cdot 2x$, and since this does not equal $(x^2-1)^{3/2}$ (for example, they have different values at x = 2), $\int (x^2-1)^{3/2} dx \neq \frac{2}{5}(x^2-1)^{5/2} + C$.

(9) Calculate the following indefinite integrals: $\int \left(w + \frac{1}{w}\right)^2 dw$, $\int \sqrt{\cot(x)} \csc^2(x) dx$, and $\int \frac{\cos(\pi/x)}{x^2} dx$.

$$\int \left(w + \frac{1}{w}\right)^2 dw = \int w^2 + 2 + w^{-2} dw = \frac{w^3}{3} + 2w - \frac{1}{w} + C.$$

Using the substitution $u = \cot(x)$ and $du = -\csc^2(x) dx$, we have $\int \sqrt{\cot(x)} \csc^2(x) dx = \int -u^{1/2} du = -\frac{u^{3/2}}{3/2} + C = -\frac{2\cot^{3/2}(x)}{3} + C.$

Using the substitution $u = \frac{\pi}{x}$ and $du = -\frac{\pi}{x^2} dx$, we have $\int \frac{\cos(\pi/x)}{x^2} dx = \int -\frac{1}{\pi} \cos(u) du = -\frac{1}{\pi} \sin(u) + C = -\frac{1}{\pi} \sin(\pi/x) + C.$

XI. Calculate $\int_{0}^{3\pi/2} |\cos(\theta)| d\theta$. (4)

$$\int_{0}^{3\pi/2} |\cos(\theta)| \, d\theta = \int_{0}^{\pi} |\cos(\theta)| \, d\theta + \int_{\pi}^{3\pi/2} |\cos(\theta)| \, d\theta = \int_{0}^{\pi/2} \cos(\theta) \, d\theta + \int_{\pi/2}^{3\pi/2} -\cos(\theta) \, d\theta = \sin(\pi/2) - \sin(\theta) + (-\sin(\pi/2)) = (1-0) + (-(-1) - (-1)) = 3.$$

XII. A differentiable function f(x) satisfies f(100) = 100 and $f'(x) < \frac{1}{x}$ for all x. Show that f(1000) < 109. (5)

By the Mean Value Theorem, we have $f(1000) - f(100) = f'(c) \cdot (1000 - 100) = 900f'(c)$ for some c between 100 and 1000. Since 100 < c, we have $f'(c) < \frac{1}{c} < \frac{1}{100}$, so $900f'(c) < 900 \cdot \frac{1}{100} = 9$. So f(1000) = f(100) + 900f'(c) < 109.

The problem can also be solved using the Fundamental Theorem of Calculus: By the FTC(b), we have $f(1000) - f(100) = \int_{100}^{1000} f'(x) dx \le \int_{100}^{1000} \frac{1}{x} dx < \int_{100}^{1000} \frac{1}{100} dx = 900 \cdot \frac{1}{100} = 9$, so f(1000) < f(100) + 9 = 109.

XIII. Use the substitution $u = \sin(\theta)$ (and the fact that $\cos^2(\theta) = 1 - \sin^2(\theta)$) to calculate that the following (4) integral $\int_0^{\pi} \sin^5(\theta) \cos^7(\theta) d\theta$ equals 0.

When
$$u = \sin(\theta)$$
, we have $du = \cos(\theta) d\theta$ and $\cos^2(\theta) = 1 - \sin^2(\theta) = 1 - u^2$, so $\int_0^{\pi} \sin^5(\theta) \cos^7(\theta) d\theta = \int_0^{\theta} u^5 (1 - u^2)^3 du = 0$.
XIV. Simplify $x^2 - x^4 + x^6 - x^8 + x^{10} - \dots + x^{202}$.
(4)
 $(x^2 - x^4 + x^6 - x^8 + x^{10} - \dots + x^{202})(1 + x^2) = x^2 + x^{204}$, so $x^2 - x^4 + x^6 - x^8 + x^{10} - \dots + x^{202} = \frac{x^2 + x^{204}}{1 + x^2}$.