I. Use the telescoping sum \(\sum_{k=1}^{n} k^2 - (k-1)^2 \) to obtain the formula \(\sum_{k=1}^{n} k = \frac{n(n+1)}{2} \).

\[
n^2 = \sum_{k=1}^{n} k^2 - (k-1)^2 = \sum_{k=1}^{n} 2k - 1 = 2 \sum_{k=1}^{n} k - \sum_{k=1}^{n-1} k = 2 \sum_{k=1}^{n} k - n. \]

Solving for \(\sum_{k=1}^{n} k \), we find that \(\sum_{k=1}^{n} k = \frac{1}{2} (n^2 + n) = \frac{n(n+1)}{2} \).

II. Calculate the Riemann sum for the following partition and function, using left-hand endpoints as the sample points \(x_i^* \): the function is \(f(x) = x^2 / 2 \), the interval is \([1, 10]\), and the partition is \(x_1 = 2, x_2 = 4, \) and \(x_3 = 9 \).

\[
\sum_{i=1}^{4} f(x_i^*) \Delta x_i = f(1) \cdot 1 + f(2) \cdot 2 + f(4) \cdot 5 + f(9) \cdot 1 = \frac{1}{2} + 4 + 40 + \frac{81}{2} = 85.
\]

III. Give an explicit example of a partition of the interval \([0, 10]\) that has mesh \(\pi \).

\(\pi, 4, 5, 6, 7, 8, 9, \) or \(\pi, 6, 8, \) etc.

IV. Let \(f(x) \) be the function defined by \(f(x) = 0 \) for \(0 \leq x < 5 \) and \(f(x) = 1 \) for \(5 \leq x \leq 10 \). Consider the partition of \([0, 10]\) defined by \(x_1 = 3, x_2 = 7 \). By making two different choices of the points \(x_i^* \), show that both of the numbers 3 and 7 are Riemann sums for this function and this partition of \([0, 10]\).

For the first partition, choose (for example) \(x_1^* = 0, x_2^* = 3, \) and \(x_3^* = 10 \), giving the Riemann sum \(f(x_1^*) \cdot \Delta x_1 + f(x_2^*) \cdot \Delta x_2 + f(x_3^*) \cdot \Delta x_3 = 0 + 0 + 1 \cdot 3 = 3 \). For the second, we could take \(x_1^* = 0, x_2^* = 7, \) and \(x_3^* = 10 \), giving the Riemann sum \(f(x_1^*) \cdot \Delta x_1 + f(x_2^*) \cdot \Delta x_2 + f(x_3^*) \cdot \Delta x_3 = 0 + 1 \cdot 4 + 1 \cdot 3 = 7 \).

V. Write the following limit as an integral, but do not try to calculate the integral: \(\lim_{n \to \infty} \sum_{i=1}^{n} \frac{\pi}{6n} \tan \left(\frac{i\pi}{6n} \right) \).

These are Riemann sums for (among other possibilities) the equal-length partition of \([a, b] = [0, \pi/6]\), with \(\Delta x_i = \frac{\pi/6}{n} = \frac{\pi}{6n} \), \(f(x) = \tan(x) \) and \(x_i^* = i \cdot \frac{\pi}{6n} \). So the limit is \(\int_{0}^{\pi/6} \tan(x) \, dx \).

VI. State the Fundamental Theorem of Calculus (both parts, of course).

Let \(f \) be a continuous function on \([a, b]\). Then \(\frac{d}{dx} \int_{a}^{x} f(t) \, dt = f(x) \). If \(F' = f \) on \([a, b]\), then \(\int_{a}^{b} f(x) \, dx = F(b) - F(a) \).

VII. State the Mean Value Theorem for Integrals.

Let \(f \) be a continuous function on \([a, b]\). Then there exists a number \(c \) between \(a \) and \(b \) for which \(\int_{a}^{b} f(x) \, dx = f(c)(b - a) \).
The problem can also be solved using the Fundamental Theorem of Calculus: By the FTC(b), we have

\[
\frac{d}{dx} \int_1^x \frac{\sin(t)}{t} \, dt = \frac{\sin(x)}{x}.
\]

For the second, the Chain Rule shows that the derivative of the first is \(\frac{\sin(x^3)}{x}\). For the last one, we write the integral as

\[
\int_1^x \frac{\sin(t)}{t} \, dt + \int_1^{t^3} \frac{\sin(t)}{t} \, dt = \int_1^{t^3} \frac{\sin(t)}{t} \, dt - \int_1^t \frac{\sin(t)}{t} \, dt,
\]

and using the Chain Rule as in the second case we find the derivative to be

\[
\frac{3 \sin(x^3)}{x} - \frac{2 \sin(x^2)}{x}.
\]

Verify that \(\int (x^2 - 1)^{3/2} \, dx\) is not \(\frac{2}{5}(x^2 - 1)^{5/2} + C\).

The derivative of \(\frac{2}{5}(x^2 - 1)^{5/2} + C\) is

\[(x^2 - 1)^{3/2} \cdot 2x,\]

and since this does not equal \((x^2 - 1)^{3/2}\) (for example, they have different values at \(x = 2\)),

\(\int (x^2 - 1)^{3/2} \, dx \neq \frac{2}{5}(x^2 - 1)^{5/2} + C\).

Calculate the following indefinite integrals:

\[
\int (w + \frac{1}{w})^2 \, dw, \quad \int \sqrt{\cot(x)} \csc^2(x) \, dx, \quad \text{and} \quad \int \frac{\cos(\pi/x)}{x^2} \, dx.
\]

\[
\int (w + \frac{1}{w})^2 \, dw = \int w^2 + 2 + w^{-2} \, dw = \frac{w^3}{3} + 2w - \frac{1}{w} + C.
\]

Using the substitution \(u = \cot(x)\) and \(du = -\csc^2(x) \, dx\), we have

\[
\int \sqrt{\cot(x)} \csc^2(x) \, dx = \int -u^{1/2} \, du = \frac{u^{3/2}}{3} + C = -\frac{2\cot^{3/2}(x)}{3} + C.
\]

Using the substitution \(u = \frac{\pi}{x}\) and \(du = -\frac{\pi}{x^2} \, dx\), we have

\[
\int \frac{\cos(\pi/x)}{x^2} \, dx = \int -\frac{1}{\pi} \cos(u) \, du = -\frac{1}{\pi} \sin(u) + C = -\frac{1}{\pi} \sin(\pi/x) + C.
\]

Calculate \(\int_0^{3\pi/2} |\cos(\theta)| \, d\theta\).

\[
\int_0^{3\pi/2} |\cos(\theta)| \, d\theta = \int_0^{\pi} |\cos(\theta)| \, d\theta + \int_{\pi}^{3\pi/2} |\cos(\theta)| \, d\theta = \int_0^{\pi} \cos(\theta) \, d\theta + \int_{\pi/2}^{3\pi/2} -\cos(\theta) \, d\theta = \sin(\pi/2) - \sin(0) + (\sin(3\pi/2) - (-\sin(\pi/2))) = (1 - 0) + (-1) - (-1) = 3.
\]

A differentiable function \(f(x)\) satisfies \(f(100) = 100\) and \(f'(x) < \frac{1}{x}\) for all \(x\). Show that \(f(1000) < 109\).

By the Mean Value Theorem, we have

\[
f(1000) - f(100) = f'(c) \cdot (1000 - 100) = 900f'(c) \quad \text{for some} \quad c \quad \text{between} \quad 100 \quad \text{and} \quad 1000.
\]

Since \(100 < c\), we have

\[
f'(c) < \frac{1}{c} < \frac{1}{100}, \quad \text{so} \quad 900f'(c) < 900 \cdot \frac{1}{100} = 9.
\]

So

\[
f(1000) = f(100) + 900f'(c) < 109.
\]

The problem can also be solved using the Fundamental Theorem of Calculus: By the FTC(b), we have

\[
f(1000) - f(100) = \int_{100}^{1000} f'(x) \, dx \leq \int_{100}^{1000} \frac{1}{x} \, dx < \int_{100}^{1000} \frac{1}{100} \, dx = 900 \cdot \frac{1}{100} = 9, \quad \text{so} \quad f(1000) < f(100) + 9 = 109.
\]
XIII. Use the substitution $u = \sin(\theta)$ (and the fact that $\cos^2(\theta) = 1 - \sin^2(\theta)$) to calculate that the following integral $\int_{0}^{\pi} \sin^5(\theta) \cos^7(\theta) \, d\theta$ equals 0.

When $u = \sin(\theta)$, we have $du = \cos(\theta) \, d\theta$ and $\cos^2(\theta) = 1 - \sin^2(\theta) = 1 - u^2$, so $\int_{0}^{\pi} \sin^5(\theta) \cos^7(\theta) \, d\theta = \int_{0}^{\pi} \sin^5(\theta) \cos^6(\theta) \cos(\theta) \, d\theta = \int_{0}^{0} u^5 (1 - u^2)^3 \, du = 0.$

XIV. Simplify $x^2 - x^4 + x^6 - x^8 + x^{10} - \cdots + x^{202}$.

$(x^2 - x^4 + x^6 - x^8 + x^{10} - \cdots + x^{202})(1 + x^2) = x^2 + x^{204}$, so $x^2 - x^4 + x^6 - x^8 + x^{10} - \cdots + x^{202} = \frac{x^2 + x^{204}}{1 + x^2}.$