
Mathematics 2423-001H
Final Examination
May 11, 2005

Name (please print)

Instructions: Remember that even if you cannot do one part of a problem, you may assume that it is true and use
it to do later parts of the problem.

I.
(8)

Calculate the following integrals using integration by parts.

1.
∫

xex dx

Using integration by parts with u = x, du = dx, dv = ex dx, and v = ex, we find that
∫

xex dx =

xex −
∫

ex dx = xex − ex + C.

2.
∫

x3

√
1 + x2

dx

Using integration by parts with u = x2, du =
x√

1 + x2
dx, dv = 2x dx, and v =

√
1 + x2, we find that∫

x3

√
1 + x2

dx = x2
√

1 + x2 −
∫

2x
√

1 + x2 dx = x2
√

1 + x2 − 2
3(1 + x2)3/2 + C.

II.
(10)

Let tan−1(x) be the inverse of the function f(x) = tan(x), −π/2 < x < π/2.

1. Find the domain and range of tan−1(x).

Its domain is the range of f(x), that is, all x values. Its range is the domain of f(x), that is, −π/2 <
x < π/2.

2. Sketch the graph of tan−1(x).

3. Use right triangles to simplify the expressions csc(tan−1(x)) and cos
(

2 tan−1

(√
x

2

))
.

tan−1(x) is an angle in a right triangle whose opposite leg is x and adjacent leg is 1. By the Pythagorean
Theorem, the hypotenuse has length

√
1 + x2, giving csc(tan−1(x)) =

√
1 + x2/x.

cos
(

2 tan−1

(√
x

2

))
= cos2

(
tan−1

(√
x

2

))
− sin2

(
tan−1

(√
x

2

))
. To find these, we use an angle

in a right triangle whose opposite leg is
√

x and adjacent leg is 2. By the Pythagorean Theorem, the

hypotenuse has length
√

x + 4, giving cos
(

2 tan−1

(√
x

2

))
=

4
x + 4

− x

x + 4
=

4− x

4 + x
.

4. Use the chain rule to calculate the derivative of tan−1(x), and write the corresponding indefinite integral
formula.

Differentiating the equation tan(tan−1(x)) = x, we obtain sec2(tan−1(x)) · d

dx
(tan−1(x)) = 1, and

therefore
d

dx
(tan−1(x)) = cos2(tan−1(x)) =

1
1 + x2

(using a right triangle to find cos(tan−1(x)) =

1√
1 + x2

). The corresponding indefinite integral formula is
∫

1
1 + x2

dx = tan−1(x) + C.
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III.
(8)

We know, of course, that the exact value of
∫ π

0
sin(x) dx is 2. Calculate the value obtained when Simpson’s

Rule with n = 4 is used to estimate
∫ π

0
sin(x) dx. (Find the exact value of the estimate; its numerical value

is approximately 2.00455.) Use one of the error formulas to estimate the error. (Leave the error estimate
as an expression involving π; in case you are curious, its numerical value is close to 0.00664, so it gives a
rather accurate estimate of the error.)

The x-values are x0 = 0, x1 = π/4, x2 = π/2, x3 = 3π/4, and x4 = π, with corresponding y-
values y0 = 0, y1 = 1/

√
2, y2 = 1, y3 = 1/

√
2, and y4 = 0. Plugging into Simpson’s rule gives the

approximation
∫ π

0
sin(x) dx ≈ (π/12)(0+4/

√
2+2+4/

√
2+0) = π(1+2

√
2)/6. The fourth derivative

of sin(x) is sin(x), so K is the maximum value of | sin(x)| for 0 ≤ x ≤ π, that is, K = 1. We have
b− a = π − 0 = π, so the formula from the Table of Integrals gives the maximum possible magnitude

of the error to be
π5

180 · 44
.

IV.
(8)

Consider the portion of the graph y = tan−1(x) between x = 0 and x = 1. For each of the following,
write an integral whose value is the specified quantity for this portion of the graph, but do not attempt to
evaluate the integrals.

1. The length of this portion of the graph.

We calculate ds =

√
1 +

(
d

dx
(tan−1(x))

)2

dx =

√
1 +

(
1

1 + x2

)2

dx. So the length is∫ 1

0

√
1 +

(
1

1 + x2

)2

dx.

2. The surface area obtained when it is rotated about the x-axis.∫
2πρ ds =

∫ 1

0
2π tan−1(x)

√
1 +

(
1

1 + x2

)2

dx.

3. The surface area obtained when it is rotated about the line y = −1.∫
2πρ ds =

∫ 1

0
2π(1 + tan−1(x))

√
1 +

(
1

1 + x2

)2

dx.

4. The surface area obtained when it is rotated about the y-axis.∫
2πρ ds =

∫ 1

0
2πx

√
1 +

(
1

1 + x2

)2

dx.



Page 3 Name (please print)

V.
(8)

Use a trig substitution to evaluate the integral
∫ √

1 + 4x2 dx. You may want to utilize the table of

integrals for some of the later steps in the calculation. Express the answer in terms of x.

Regarding 1 + 4x2 as u2 + a2 and making the substitution u = a tan(θ), we put 2x = tan(θ),

dx = 1
2 sec2(θ) dθ, and compute

∫ √
1 + 4x2 dx =

∫ √
1 + tan2(θ)

1
2

sec2(θ) dθ = 1
2

∫
sec3(θ) dθ.

Applying formulas from the Table of Integrals, we have 1
2

∫
sec3(θ) dθ = 1

2 ·
1

3−1 tan(θ) sec(θ) +

1
2 ·

3−2
3−1

∫
sec(θ) dθ = 1

4 tan(θ) sec(θ) + 1
4 ln | sec(θ) + tan(θ)| + C. Finally, we consider a right tri-

angle with an angle θ whose opposite leg is 2x and adjacent leg is 1, so that the hypotenuse is√
1 + 4x2. We observe that sec(θ) =

√
1 + 4x2. So we have 1

4 tan(θ) sec(θ)+ 1
4 ln | sec(θ)+tan(θ)|+C =

1
2x
√

1 + 4x2 + 1
4 ln |2x +

√
1 + 4x2|+ C.

VI.
(9)

This problem concerns functions that are one-to-one.

1. Give a formal definition (not just the intuitive idea) of the statement that a function f is one-to-one.

To say that f is one-to-one means that if f(x1) = f(x2), then x1 = x2.

2. Give an example of two functions (defined for all x) that are one-to-one, but whose product is not one-to-one.

Let f(x) = g(x) = x. Each of them is one-to-one, but f(x)g(x) = x2 is not one-to-one.

3. Give an example of two functions (defined for all x) that are not one-to-one, but whose product is one-to-one.

Let f(x) = x + 1 for x ≤ 0 and f(x) = 1 for x ≥ 0, and g(x) = 1 for x ≤ 0 and g(x) = x + 1 for x ≥ 0.
Then, f(x)g(x) = x + 1 for all x, which is one-to-one, but neither f(x) nor g(x) is one-to-one (indeed,
each one takes the value 1 at infinitely many points).

VII.
(8)

Use the table of integrals to calculate
∫

1
x2(3x− 1)

dx. Calculate
∫ ∞

1

1
x2(3x− 1)

dx.

Using the formula
∫

du

u2(a + bu)
= − 1

au
+

b

a2
ln

∣∣∣∣a + bu

u

∣∣∣∣ + C with x = u, a = −1, and b = 3, we have∫
1

x2(3x− 1)
dx =

1
x
− 3 ln

∣∣∣∣3x− 1
x

∣∣∣∣ + C =
1
x

+ 3 ln
∣∣∣∣3 − 1

x

∣∣∣∣ + C. So we have
∫ ∞

1

1
x2(3x− 1)

dx =

lim
b→∞

1
x

+3 ln
∣∣∣∣3− 1

x

∣∣∣∣∣∣∣∣b
1

= lim
b→∞

1
b

+3 ln
∣∣∣∣3− 1

b

∣∣∣∣− (1+3 ln |3−1|) = 0+3 ln(3)−1−3 ln(2) = 3 ln(3
2)−1.

VIII.
(3)

Give an explicit example of a partition of the interval [0, e] that has mesh 10−2. You may use the fact that
e is approximately 2.718281828459

Let x0 = 0, x1 = 0.01, x2 = 0.02, and so on (that is, xn = n · 0.01). When we reach x271 = 2.71, the
distance to e is approximately 0.008281828459 < 0.01. So putting x272 = e gives a partition whose
mesh is equal to the larger of 0.01 and e− 2.71, that is, 0.01.
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IX.
(5)

Calculate the Riemann sum for the following partition and function, using right-hand endpoints as the
sample points x∗i : the function is f(x) = x, the interval is [0, 2], and the partition has n = 4 with
x1 = 0.89, x2 = 1.89, and x3 = 1.99. Leave the answer as a sum of expressions involving decimal numbers;
do not carry out the arithmetic.

Since we are using right-hand endpoints, we have x∗i = xi. So the Riemann sum is f(x1)∆x1 +
f(x2)∆x2+f(x3)∆x3+f(x4)∆x4 = 0.89·0.89+1.89·1+1.99·0.1+2·0.01 = (0.89)2+1.89+0.199+0.02.

X.
(5)

A continuous function f(x) is positive and increasing for 0 ≤ x ≤ 1. A partition 0 = x0 < x1 < x2 <
· · · < xn−1 < xn = 1 is selected. Let L =

∑n
i=1 f(xi−1) ∆xi be the Riemann sum for f(x) computed

using left-hand endpoints as the sample points, and let R =
∑n

i=1 f(xi) ∆xi be the Riemann sum for f(x)
computed using right-hand endpoints as the sample points. Using pictures to clarify your explanation, and
regarding

∫ 1
0 f(x) dx as the area under y = f(x) between x = 0 and x = 1, explain why L <

∫ 1
0 f(x) dx an∫ 1

0 f(x) dx < R.

For the left-endpoint picture, all the rectangles are inside the region under the graph y = f(x), so
L <

∫ 1
0 f(x) dx, while for the right-endpoint picture, the area under the graph is inside the (union of

the) rectangles, so
∫ 1
0 f(x) dx < R.

XI.
(4)

State the Fundamental Theorem of Calculus (both parts, of course).

Let f be a continuous function on [a, b]. Then
d

dx

∫ x

a
f(t) dt = f(x). If F ′ = f on [a, b], then∫ b

a
f(x) dx = F (b)− F (a).

XII.
(4)

Verify that y = a sinh(x) + b cosh(x) is a solution to the differential equation y′′ − y = 0.

y′ = a cosh(x) + b sinh(x), so y′′ = a sinh(x) + b cosh(x) = y.

XIII.
(8)

Use l’Hôpital’s rule to calculate the following limits:

1. lim
t→0

5t − 3t

t
.

lim
t→0

5t − 3t

t
= lim

t→0

ln(5)5t − ln(3)3t

1
= ln(5)− ln(3).

2. lim
x→∞

(
1 +

π

x

)x
.

lim
x→∞

(
1 + π

x

)x
= lim

x→∞
e
ln

((
1+π

x

)x
)

= lim
x→∞

e
x ln

(
1+π

x

)
. Now lim

x→∞
x ln

(
1 + π

x

)
= lim

x→∞

ln
(
1 + π

x

)
1
x

=

lim
x→∞

1
1 + π

x

· −π

x2

− 1
x2

= lim
x→∞

π

1 + π
x

=
π

1 + 0
= π, so lim

x→∞
e
x ln

(
1+π

x

)
= eπ.
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XIV.
(6)

For each of the following rational functions, write out the form of the partial fraction decomposition. Do
not solve for unknown values of the coefficients.

1.
x4 − x2

(x2 + 1)3

x4 − x2

(x2 + 1)3
=

Ax + B

x2 + 1
+

Cx + D

(x2 + 1)2
+

Ex + F

(x2 + 1)3

2.
1

(x + 1)2(x + 3)2(x2 − 1)2

1
(x + 1)2(x + 3)2(x2 − 1)2

=
1

(x + 1)2(x + 3)2(x + 1)2(x− 1)2
=

1
(x + 3)2(x− 1)2(x + 1)4

=
A

x + 3
+

B

(x + 3)2
+

C

x− 1
+

D

(x− 1)2
+

E

x + 1
+

F

(x + 1)2
+

G

(x + 1)3
+

H

(x + 1)4

XV.
(6)

Calculate the derivatives of the following functions:

1.
∫ ln(x)

2

1
ln(t)

dt.

d

dx

∫ ln(x)

2

1
ln(t)

dt =
1

ln(ln(x))
· d

dx
(ln(x)) =

1
x ln(ln(x))

.

2.
∫ ∫ x2

0 eu2
du

0
et2 dt.

d

dx

∫ ∫ x2

0 eu2
du

0
et2 dt = e

( ∫ x2

0 eu2
du

)2

· d
dx

( ∫ x2

0 eu2
du

)
= e

( ∫ x2

0 eu2
du

)2

· e(x2)2 d
dx

(
x2

)
= 2xex4

e

( ∫ x2

0 eu2
du

)2

.

XVI.
(12)

Let R be the region between y = 0 and y = 1
x for 1 ≤ x < ∞.

1. Calculate the volume of the solid E obtained when R is rotated about the x-axis (the volume is given by an
improper integral, whose value you will need to calculate).

V =
∫ ∞

1
π
(1

x

)2
dx = lim

b→∞

∫ b

1

π

x2
dx = lim

b→∞

−π

x

∣∣∣b
1

= lim
b→∞

π − π

b
= π

2. Write an improper integral whose value represents the surface area of E (not including the side disk where
x = 1, just the part produced by rotating y = 1

x).

ds =

√
1 +

(
d

dx

(
1
x

))2

dx =
√

1 +
1
x4

dx, so the length is
∫ ∞

1
2π · 1

x
·
√

1 +
1
x4

dx.

3. By making a comparison, verify that the integral which represents the surface area of E diverges to ∞.

For x ≥ 1, 2π
1
x

√
1 +

1
x4

≥ 2π
1
x

√
1 =

2π

x
≥ 0. Since

∫ ∞

1

2π

x
dx = lim

b→∞

∫ b

1

2π

x
dx = lim

b→∞
2π ln(x)

∣∣∣b
1

=

lim
b→∞

2π ln(b) = ∞, the original integral for the surface area also diverges.
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XVII.
(6)

Use integration by parts to verify that f(a + h)− f(a)− f ′(a)h =
∫ h

0
(h− t)f ′′(a + t) dt.

∫ h

0
(h− t) f ′′(a + t) dt = (h− t) f ′(a + t)

∣∣∣∣h
0

+
∫ h

0
f ′(a + t) dt

= −f ′(a)h + f(a + t)
∣∣∣∣h
0

= −f ′(a)h + f(a + h)− f(a)


