Mathematics	2423-001H
-------------	-----------

May 11, 2005

Name (please print)

Instructions: Remember that even if you cannot do one part of a problem, you may assume that it is true and use it to do later parts of the problem.

I. Calculate the following integrals using integration by parts.

(8)

1.
$$\int xe^x dx$$

Using integration by parts with u = x, du = dx, $dv = e^x dx$, and $v = e^x$, we find that $\int xe^x dx = xe^x - \int e^x dx = xe^x - e^x + C$.

$$2. \int \frac{x^3}{\sqrt{1+x^2}} \, dx$$

Using integration by parts with $u=x^2$, $du=\frac{x}{\sqrt{1+x^2}}\,dx$, $dv=2x\,dx$, and $v=\sqrt{1+x^2}$, we find that $\int \frac{x^3}{\sqrt{1+x^2}}\,dx = x^2\sqrt{1+x^2} - \int 2x\sqrt{1+x^2}\,dx = x^2\sqrt{1+x^2} - \frac{2}{3}(1+x^2)^{3/2} + C.$

II. Let $\tan^{-1}(x)$ be the inverse of the function $f(x) = \tan(x), -\pi/2 < x < \pi/2$.

(10)

1. Find the domain and range of $\tan^{-1}(x)$.

Its domain is the range of f(x), that is, all x values. Its range is the domain of f(x), that is, $-\pi/2 < x < \pi/2$.

- 2. Sketch the graph of $\tan^{-1}(x)$.
- 3. Use right triangles to simplify the expressions $\csc(\tan^{-1}(x))$ and $\cos\left(2\tan^{-1}\left(\frac{\sqrt{x}}{2}\right)\right)$.

 $\tan^{-1}(x)$ is an angle in a right triangle whose opposite leg is x and adjacent leg is 1. By the Pythagorean Theorem, the hypotenuse has length $\sqrt{1+x^2}$, giving $\csc(\tan^{-1}(x)) = \sqrt{1+x^2}/x$.

 $\cos\left(2\tan^{-1}\left(\frac{\sqrt{x}}{2}\right)\right) = \cos^2\left(\tan^{-1}\left(\frac{\sqrt{x}}{2}\right)\right) - \sin^2\left(\tan^{-1}\left(\frac{\sqrt{x}}{2}\right)\right).$ To find these, we use an angle in a right triangle whose opposite leg is \sqrt{x} and adjacent leg is 2. By the Pythagorean Theorem, the hypotenuse has length $\sqrt{x+4}$, giving $\cos\left(2\tan^{-1}\left(\frac{\sqrt{x}}{2}\right)\right) = \frac{4}{x+4} - \frac{x}{x+4} = \frac{4-x}{4+x}$.

4. Use the chain rule to calculate the derivative of $tan^{-1}(x)$, and write the corresponding indefinite integral formula.

Differentiating the equation $\tan(\tan^{-1}(x)) = x$, we obtain $\sec^2(\tan^{-1}(x)) \cdot \frac{d}{dx}(\tan^{-1}(x)) = 1$, and therefore $\frac{d}{dx}(\tan^{-1}(x)) = \cos^2(\tan^{-1}(x)) = \frac{1}{1+x^2}$ (using a right triangle to find $\cos(\tan^{-1}(x)) = \frac{1}{\sqrt{1+x^2}}$). The corresponding indefinite integral formula is $\int \frac{1}{1+x^2} dx = \tan^{-1}(x) + C$.

We know, of course, that the exact value of $\int_0^{\pi} \sin(x) dx$ is 2. Calculate the value obtained when Simpson's Rule with n = 4 is used to estimate $\int_0^{\pi} \sin(x) dx$. (Find the exact value of the estimate; its numerical value is approximately 2 00455.) Use one of the error formulas to estimate the error. (Leave the error estimate

the with n = 4 is used to estimate $\int_0^\infty \sin(x) dx$. (Find the exact value of the estimate; its numerical value is approximately 2.00455.) Use one of the error formulas to estimate the error. (Leave the error estimate as an expression involving π ; in case you are curious, its numerical value is close to 0.00664, so it gives a rather accurate estimate of the error.)

The x-values are $x_0 = 0$, $x_1 = \pi/4$, $x_2 = \pi/2$, $x_3 = 3\pi/4$, and $x_4 = \pi$, with corresponding y-values $y_0 = 0$, $y_1 = 1/\sqrt{2}$, $y_2 = 1$, $y_3 = 1/\sqrt{2}$, and $y_4 = 0$. Plugging into Simpson's rule gives the approximation $\int_0^{\pi} \sin(x) dx \approx (\pi/12)(0+4/\sqrt{2}+2+4/\sqrt{2}+0) = \pi(1+2\sqrt{2})/6$. The fourth derivative of $\sin(x)$ is $\sin(x)$, so K is the maximum value of $|\sin(x)|$ for $0 \le x \le \pi$, that is, K = 1. We have $b - a = \pi - 0 = \pi$, so the formula from the Table of Integrals gives the maximum possible magnitude of the error to be $\frac{\pi^5}{180 \cdot 4^4}$.

- IV. Consider the portion of the graph $y = \tan^{-1}(x)$ between x = 0 and x = 1. For each of the following, write an integral whose value is the specified quantity for this portion of the graph, but do not attempt to evaluate the integrals.
 - 1. The length of this portion of the graph.

We calculate
$$ds = \sqrt{1 + \left(\frac{d}{dx}(\tan^{-1}(x))\right)^2} dx = \sqrt{1 + \left(\frac{1}{1+x^2}\right)^2} dx$$
. So the length is
$$\int_0^1 \sqrt{1 + \left(\frac{1}{1+x^2}\right)^2} dx.$$

2. The surface area obtained when it is rotated about the x-axis.

$$\int 2\pi \rho \, ds = \int_0^1 2\pi \tan^{-1}(x) \sqrt{1 + \left(\frac{1}{1+x^2}\right)^2} \, dx.$$

3. The surface area obtained when it is rotated about the line y = -1.

$$\int 2\pi\rho \, ds = \int_0^1 2\pi (1 + \tan^{-1}(x)) \sqrt{1 + \left(\frac{1}{1 + x^2}\right)^2} \, dx.$$

4. The surface area obtained when it is rotated about the y-axis.

$$\int 2\pi \rho \, ds = \int_0^1 2\pi x \sqrt{1 + \left(\frac{1}{1 + x^2}\right)^2} \, dx.$$

V. Use a trig substitution to evaluate the integral $\int \sqrt{1+4x^2} dx$. You may want to utilize the table of integrals for some of the later steps in the calculation. Express the answer in terms of x.

Regarding $1+4x^2$ as u^2+a^2 and making the substitution $u=a\tan(\theta)$, we put $2x=\tan(\theta)$, $dx=\frac{1}{2}\sec^2(\theta)\,d\theta$, and compute $\int\sqrt{1+4x^2}\,dx=\int\sqrt{1+\tan^2(\theta)}\frac{1}{2}\sec^2(\theta)\,d\theta=\frac{1}{2}\int\sec^3(\theta)\,d\theta$. Applying formulas from the Table of Integrals, we have $\frac{1}{2}\int\sec^3(\theta)\,d\theta=\frac{1}{2}\cdot\frac{1}{3-1}\tan(\theta)\sec(\theta)+\frac{1}{2}\cdot\frac{3-2}{3-1}\int\sec(\theta)\,d\theta=\frac{1}{4}\tan(\theta)\sec(\theta)+\frac{1}{4}\ln|\sec(\theta)+\tan(\theta)|+C$. Finally, we consider a right triangle with an angle θ whose opposite leg is 2x and adjacent leg is 1, so that the hypotenuse is $\sqrt{1+4x^2}$. We observe that $\sec(\theta)=\sqrt{1+4x^2}$. So we have $\frac{1}{4}\tan(\theta)\sec(\theta)+\frac{1}{4}\ln|\sec(\theta)+\tan(\theta)|+C=\frac{1}{2}x\sqrt{1+4x^2}+\frac{1}{4}\ln|2x+\sqrt{1+4x^2}|+C$.

VI. This problem concerns functions that are one-to-one.

(9)
1. Give a formal definition (not just the intuitive idea) of the statement that a function f is one-to-one.

2. Give an example of two functions (defined for all x) that are one-to-one, but whose product is not one-to-one.

Let f(x) = g(x) = x. Each of them is one-to-one, but $f(x)g(x) = x^2$ is not one-to-one.

3. Give an example of two functions (defined for all x) that are not one-to-one, but whose product is one-to-one.

Let f(x) = x + 1 for $x \le 0$ and f(x) = 1 for $x \ge 0$, and g(x) = 1 for $x \le 0$ and g(x) = x + 1 for $x \ge 0$. Then, f(x)g(x) = x + 1 for all x, which is one-to-one, but neither f(x) nor g(x) is one-to-one (indeed, each one takes the value 1 at infinitely many points).

VII. Use the table of integrals to calculate $\int \frac{1}{x^2(3x-1)} dx$. Calculate $\int_1^\infty \frac{1}{x^2(3x-1)} dx$.

To say that f is one-to-one means that if $f(x_1) = f(x_2)$, then $x_1 = x_2$.

Using the formula $\int \frac{du}{u^2(a+bu)} = -\frac{1}{au} + \frac{b}{a^2} \ln \left| \frac{a+bu}{u} \right| + C \text{ with } x = u, \ a = -1, \text{ and } b = 3, \text{ we have } \int \frac{1}{x^2(3x-1)} \, dx = \frac{1}{x} - 3 \ln \left| \frac{3x-1}{x} \right| + C = \frac{1}{x} + 3 \ln \left| 3 - \frac{1}{x} \right| + C. \text{ So we have } \int_1^\infty \frac{1}{x^2(3x-1)} \, dx = \lim_{b \to \infty} \frac{1}{x} + 3 \ln \left| 3 - \frac{1}{x} \right| \Big|_1^b = \lim_{b \to \infty} \frac{1}{b} + 3 \ln \left| 3 - \frac{1}{b} \right| - (1 + 3 \ln |3 - 1|) = 0 + 3 \ln(3) - 1 - 3 \ln(2) = 3 \ln(\frac{3}{2}) - 1.$

VIII. Give an explicit example of a partition of the interval [0, e] that has mesh 10^{-2} . You may use the fact that (3) e is approximately 2.718281828459

Let $x_0 = 0$, $x_1 = 0.01$, $x_2 = 0.02$, and so on (that is, $x_n = n \cdot 0.01$). When we reach $x_{271} = 2.71$, the distance to e is approximately 0.008281828459 < 0.01. So putting $x_{272} = e$ gives a partition whose mesh is equal to the larger of 0.01 and e = 2.71, that is, 0.01.

IX. Calculate the Riemann sum for the following partition and function, using right-hand endpoints as the sample points x_i^* : the function is f(x) = x, the interval is [0,2], and the partition has n = 4 with $x_1 = 0.89$, $x_2 = 1.89$, and $x_3 = 1.99$. Leave the answer as a sum of expressions involving decimal numbers; do not carry out the arithmetic.

Since we are using right-hand endpoints, we have $x_i^* = x_i$. So the Riemann sum is $f(x_1)\Delta x_1 + f(x_2)\Delta x_2 + f(x_3)\Delta x_3 + f(x_4)\Delta x_4 = 0.89 \cdot 0.89 + 1.89 \cdot 1 + 1.99 \cdot 0.1 + 2 \cdot 0.01 = (0.89)^2 + 1.89 + 0.199 + 0.02$.

X. A continuous function f(x) is positive and increasing for $0 \le x \le 1$. A partition $0 = x_0 < x_1 < x_2 < 1$. A continuous function f(x) is positive and increasing for $0 \le x \le 1$. A partition $0 = x_0 < x_1 < x_2 < 1$. A partition $0 = x_0 < x_1 < x_2 < 1$. A partition $0 = x_0 < x_1 < x_2 < 1$. A partition $0 = x_0 < x_1 < x_2 < 1$. A partition $0 = x_0 < x_1 < x_2 < 1$. A partition $0 = x_0 < x_1 < x_2 < 1$. A partition $0 = x_0 < x_1 < x_2 < 1$. A partition $0 = x_0 < x_1 < x_2 < 1$. A partition $0 = x_0 < x_1 < x_2 < 1$. A partition $0 = x_0 < x_1 < x_2 < 1$. A partition $0 = x_0 < x_1 < x_2 < 1$. A partition $0 = x_0 < x_1 < x_2 < 1$. A partition $0 = x_0 < x_1 < x_2 < 1$. A partition $0 = x_0 < x_1 < x_2 < 1$. A partition $0 = x_0 < x_1 < x_2 < 1$. A partition $0 = x_0 < x_1 < x_2 < 1$. A partition $0 = x_0 < x_1 < x_2 < 1$. A partition $0 = x_0 < x_1 < x_2 < 1$. A partition $0 = x_0 < x_1 < x_2 < 1$. A partition $0 = x_0 < x_1 < x_2 < 1$. A partition $0 = x_0 < x_1 < x_2 < 1$. A partition $0 = x_0 < x_1 < x_2 < 1$. A partition $0 = x_0 < x_1 < x_2 < 1$. A partition $0 = x_0 < x_1 < x_2 < 1$. A partition $0 = x_0 < x_1 < x_2 < 1$. A partition $0 = x_0 < x_1 < x_2 < 1$. A partition $0 = x_0 < x_1 < x_2 < 1$. A partition $0 = x_0 < x_1 < x_2 < 1$. A partition $0 = x_0 < x_1 < x_2 < 1$. A partition $0 = x_0 < x_1 < x_2 < 1$. A partition $0 = x_0 < x_1 < x_2 < 1$. A partition $0 = x_0 < x_1 < x_2 < 1$. A partition $0 = x_0 < x_1 < x_2 < 1$. A partition $0 = x_0 < x_1 < x_2 < 1$. A partition $0 = x_0 < x_1 < x_2 < 1$. A partition $0 = x_0 < x_1 < x_2 < 1$ and $0 = x_0 < x_1 < x_2 < 1$. A partition $0 = x_0 < x_1 < x_2 < 1$ and $0 = x_0 < x_1 < x_2 < 1$ and $0 = x_0 < x_1 < x_2 < 1$ and $0 = x_0 < x_1 < x_2 < 1$ and $0 = x_0 < x_1 < x_2 < 1$ and $0 = x_0 < x_1 < x_2 < 1$ and $0 = x_0 < x_1 < x_2 < 1$ and $0 = x_0 < x_1 < x_2 < 1$ and $0 = x_0 < x_1 < x_2 < 1$ and $0 = x_0 < x_1 < x_2 < 1$ and $0 = x_0 < x_1 < x_1 < x_2 < 1$ and $0 = x_0 < x_1 < x_1 < x_2 < 1$ and $0 = x_0 < x_1 < x_1 < x_2 < 1$ and 0

For the left-endpoint picture, all the rectangles are inside the region under the graph y = f(x), so $L < \int_0^1 f(x) dx$, while for the right-endpoint picture, the area under the graph is inside the (union of the) rectangles, so $\int_0^1 f(x) dx < R$.

- XI. State the Fundamental Theorem of Calculus (both parts, of course).
- (4) Let f be a continuous function on [a,b]. Then $\frac{d}{dx} \int_a^x f(t) dt = f(x)$. If F' = f on [a,b], then $\int_a^b f(x) dx = F(b) F(a).$
- **XII**. Verify that $y = a \sinh(x) + b \cosh(x)$ is a solution to the differential equation y'' y = 0.
- (4) $y' = a\cosh(x) + b\sinh(x), \text{ so } y'' = a\sinh(x) + b\cosh(x) = y.$

 ${\bf XIII}.\;\;$ Use l'Hôpital's rule to calculate the following limits:

(8) $1. \lim_{t \to 0} \frac{5^t - 3^t}{t}.$

$$\lim_{t \to 0} \frac{5^t - 3^t}{t} = \lim_{t \to 0} \frac{\ln(5)5^t - \ln(3)3^t}{1} = \ln(5) - \ln(3).$$

- $2. \lim_{x \to \infty} \left(1 + \frac{\pi}{x}\right)^x.$
 - $\lim_{x \to \infty} \left(1 + \frac{\pi}{x}\right)^x = \lim_{x \to \infty} e^{\ln\left(\left(1 + \frac{\pi}{x}\right)^x\right)} = \lim_{x \to \infty} e^{x\ln\left(1 + \frac{\pi}{x}\right)}. \text{ Now } \lim_{x \to \infty} x\ln\left(1 + \frac{\pi}{x}\right) = \lim_{x \to \infty} \frac{\ln\left(1 + \frac{\pi}{x}\right)}{\frac{1}{x}} = \lim_{x \to \infty} \frac{\frac{1}{1 + \frac{\pi}{x}} \cdot \frac{-\pi}{x^2}}{-\frac{1}{x^2}} = \lim_{x \to \infty} \frac{\pi}{1 + \frac{\pi}{x}} = \frac{\pi}{1 + 0} = \pi, \text{ so } \lim_{x \to \infty} e^{x\ln\left(1 + \frac{\pi}{x}\right)} = e^{\pi}.$

XIV. For each of the following rational functions, write out the form of the partial fraction decomposition. Do not solve for unknown values of the coefficients.

1.
$$\frac{x^4 - x^2}{(x^2 + 1)^3}$$

$$\frac{x^4 - x^2}{(x^2 + 1)^3} = \frac{Ax + B}{x^2 + 1} + \frac{Cx + D}{(x^2 + 1)^2} + \frac{Ex + F}{(x^2 + 1)^3}$$
2.
$$\frac{1}{(x + 1)^2 (x + 3)^2 (x^2 - 1)^2}$$

$$\frac{1}{(x + 1)^2 (x + 3)^2 (x^2 - 1)^2} = \frac{1}{(x + 1)^2 (x + 3)^2 (x + 1)^2 (x - 1)^2} = \frac{1}{(x + 3)^2 (x - 1)^2 (x + 1)^4}$$

$$= \frac{A}{x + 3} + \frac{B}{(x + 3)^2} + \frac{C}{x - 1} + \frac{D}{(x - 1)^2} + \frac{E}{x + 1} + \frac{F}{(x + 1)^2} + \frac{G}{(x + 1)^3} + \frac{H}{(x + 1)^4}$$

XV. Calculate the derivatives of the following functions:

1.
$$\int_{2}^{\ln(x)} \frac{1}{\ln(t)} dt.$$
$$\frac{d}{dx} \int_{2}^{\ln(x)} \frac{1}{\ln(t)} dt = \frac{1}{\ln(\ln(x))} \cdot \frac{d}{dx} (\ln(x)) = \frac{1}{x \ln(\ln(x))}.$$

$$2. \int_{0}^{\int_{0}^{x^{2}} e^{u^{2}} du} e^{t^{2}} dt.$$

$$\frac{d}{dx} \int_{0}^{\int_{0}^{x^{2}} e^{u^{2}} du} e^{t^{2}} dt = e^{\left(\int_{0}^{x^{2}} e^{u^{2}} du\right)^{2}} \cdot \frac{d}{dx} \left(\int_{0}^{x^{2}} e^{u^{2}} du\right) = e^{\left(\int_{0}^{x^{2}} e^{u^{2}} du\right)^{2}} \cdot e^{(x^{2})^{2}} \frac{d}{dx} (x^{2}) = 2xe^{x^{4}} e^{\left(\int_{0}^{x^{2}} e^{u^{2}} du\right)^{2}}.$$

XVI. Let R be the region between y = 0 and $y = \frac{1}{x}$ for $1 \le x < \infty$.

(12)

1. Calculate the volume of the solid E obtained when R is rotated about the x-axis (the volume is given by an improper integral, whose value you will need to calculate).

$$V = \int_1^\infty \pi \left(\frac{1}{x}\right)^2 dx = \lim_{b \to \infty} \int_1^b \frac{\pi}{x^2} dx = \lim_{b \to \infty} \frac{-\pi}{x} \Big|_1^b = \lim_{b \to \infty} \pi - \frac{\pi}{b} = \pi$$

2. Write an improper integral whose value represents the surface area of E (not including the side disk where x = 1, just the part produced by rotating $y = \frac{1}{x}$).

$$ds = \sqrt{1 + \left(\frac{d}{dx}\left(\frac{1}{x}\right)\right)^2} dx = \sqrt{1 + \frac{1}{x^4}} dx$$
, so the length is $\int_1^\infty 2\pi \cdot \frac{1}{x} \cdot \sqrt{1 + \frac{1}{x^4}} dx$.

3. By making a comparison, verify that the integral which represents the surface area of E diverges to ∞ .

For
$$x \ge 1$$
, $2\pi \frac{1}{x} \sqrt{1 + \frac{1}{x^4}} \ge 2\pi \frac{1}{x} \sqrt{1} = \frac{2\pi}{x} \ge 0$. Since $\int_1^\infty \frac{2\pi}{x} dx = \lim_{b \to \infty} \int_1^b \frac{2\pi}{x} dx = \lim_{b \to \infty} 2\pi \ln(x) \Big|_1^b = \lim_{b \to \infty} 2\pi \ln(b) = \infty$, the original integral for the surface area also diverges.

XVII. Use integration by parts to verify that $f(a+h) - f(a) - f'(a)h = \int_0^h (h-t)f''(a+t) dt$. (6)

$$\int_0^h (h-t) f''(a+t) dt = (h-t) f'(a+t) \Big|_0^h + \int_0^h f'(a+t) dt$$
$$= -f'(a)h + f(a+t) \Big|_0^h = -f'(a)h + f(a+h) - f(a)$$