I. Calculate the curl and the divergence of the vector field $x^2\mathbf{i} + y^2\mathbf{j} - xyz\mathbf{k}$.

II. The figure to the right shows a vector field $\vec{F} = P\mathbf{i} + Q\mathbf{j}$ and three oriented arcs.

1. Near each arc, write a small “+” if the line integral of \vec{F} along that arc appears to be positive, a “−” if it appears to be negative, and a “0” if it appears to be 0.

2. Does it appear that $\frac{\partial P}{\partial x}$ is positive, negative, or 0?

3. Does it appear that $\frac{\partial Q}{\partial y}$ is positive, negative, or 0?

4. Does it appear that $\text{div}(\vec{F})$ is positive, negative, or 0?

III. Use Green’s Theorem to calculate $\int_C 3xy\,dx + 5x^2y^2\,dy$, where C is the triangle with vertices (0,0), (1,0), and (1,1).
IV. Let \(C \) be the portion of the circle of radius 2 with center at the origin that lies in the first quadrant \(x \geq 0, y \geq 0 \). By direct calculation using a parameterization of \(C \), evaluate the following line integrals.

1. \(\int_C x^2y \, ds \)

2. \(\int_C xy \, dy \)

3. \(\int_C (x\mathbf{i} + y\mathbf{j}) \cdot d\mathbf{r} \)

V. Use integration to find a function \(f(x, y, z) \) for which \(\nabla f = (y + z)\mathbf{i} + (x + z)\mathbf{j} + (x + y)\mathbf{k} \).

VI. Use the Fundamental Theorem of Calculus to carry out a partial calculation of \(\iint_R \frac{\partial P}{\partial x} \, dA \), where \(R \) is the rectangle \(1 \leq x \leq 3, 2 \leq y \leq 4 \), and \(P(x, y) \) is a function of \(x \) and \(y \).
VII. Let \(f(x, y, z) = \sin(x^2 + y^2 + z) \). Let \(C_1 \) be the line segment from \((0, 0, 0)\) to \((1, 1, 0)\), and let \(C_2 \) be the curve on the surface \(z = e^{xy} \) that lies directly above \(C_1 \). Calculate \(\int_{C_1} \nabla f \cdot d\vec{r} \) and \(\int_{C_2} \nabla f \cdot d\vec{r} \).

VIII. Let \(S \) be the surface given by \(x = u\cos(v) \), \(y = u\sin(v) \), and \(z = u \), where the domain of the parameterization is the rectangle \(0 \leq u \leq 1 \) and \(0 \leq v \leq 2\pi \).

1. Calculate \(\vec{r}_u \), \(\vec{r}_v \), \(\vec{r}_u \times \vec{r}_v \), and \(\| \vec{r}_u \times \vec{r}_v \| \).

2. Sketch the domain \(R \) in the \(uv \)-plane. Tell the points in \(R \) where locally the parameterization *neither stretches nor contracts area*.

3. Find an equation in \(x \), \(y \), and \(z \) satisfied by all points in the surface (hint: start by calculating \(x^2 + y^2 \)).
IX. The figure below shows four regions in the plane. Below each region, write a very small letter \(m \) if the region is simply connected, and a very small letter \(n \) if the region is not simply-connected. The three dots on the last region means that the region continues to the right forever.

X. Let \(C \) be the unit circle in the \(xy \)-plane and let \(\vec{T} \) be its unit tangent vector. Suppose that a certain vector field \(\vec{F} \) has the property that each point \((x, y)\) in \(C \), \(\vec{F} \cdot \vec{T} = \pi \). Find \(\int_C \vec{F} \cdot d\vec{r} \).

XI. Give an example of a 2-dimensional vector field \(P\vec{i} + Q\vec{j} \) which is not conservative but which does satisfy the condition \(\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y} \). You do not need to verify these properties, just write down the vector field.

XII. Find a vector field \(\vec{F} \) in the plane so that if \(C \) is any path which does not pass through the origin, and \(C \) starts at \(P \) and ends at \(Q \), then \(\int_C \vec{F} \cdot d\vec{r} \) equals the distance from \(Q \) to the origin, minus the distance from \(P \) to the origin.