The figure to the right shows the graph of the polar equation \(r = \cos(2\theta) \). Use a double integral in polar coordinates to calculate the area contained inside each one of its loops. You might need to use the identity \(\cos^2(x) = \frac{1}{2} + \frac{1}{2} \cos(2x) \).

Sketch the region in the first octant bounded by the three coordinate planes and the plane \(x + y + z = 1 \). Write a triple integral whose value is the volume of this region. Supply limits of integration, but do not carry out the calculation to evaluate the integral.

Calculate \(\int_0^1 \int_0^z \int_0^y z e^{-y^2} \, dx \, dy \, dz \).
IV. For the rectangle $R = [0, 1] \times [0, 2]$, calculate $\iint_{R} \frac{xy}{\sqrt{2 + x^2 + y^2}} \, dA$.

(4)

V. The figure to the right shows the portion of the graph of a certain function $f(x, y)$, and a certain point P in the domain of f. Also shown are the vector \vec{j}, located at P, and a vector \vec{v}_y tangent to the surface at the point directly above P. Suppose that f_x has the value -0.65 at P and f_y has the value -0.67. Find a, b, and c so that $\vec{v}_y = a\vec{i} + b\vec{j} + c\vec{k}$.

(3)

VI. For the following integral, sketch the region of integration and change the order of integration. The answer should have two terms. $\int_{0}^{1} \int_{2y}^{4y} f(x, y) \, dx \, dy$.

(5)
VII. State the Fundamental Theorem of Calculus (without hypotheses, just the formula). Calculate
\[\frac{\partial}{\partial x} \int_0^{x^2y^2} \sin^{100}(t^2) \, dt. \]

VIII. Find the mass of the upper hemisphere \(E \) given by \(x^2 + y^2 + z^2 = a^2 \), \(z \geq 0 \) if the density function is \(z \). In spherical coordinates, \(x = \rho \cos(\theta) \sin(\phi) \), \(y = \rho \sin(\theta) \sin(\phi) \), \(z = \rho \cos(\phi) \), and \(dV = \rho^2 \sin(\phi) \, d\rho \, d\phi \, d\theta \).

IX. Evaluate \(\iiint_E \sqrt{x^2 + y^2} \, dV \), where \(E \) is the region that lies inside the cylinder \(x^2 + y^2 = 4 \) and between the planes \(z = -1 \) and \(z = 2 \). Use cylindrical coordinates, so that \(\sqrt{x^2 + y^2} = r \).
X. Consider a lamina that occupies the region of the unit disk in the xy-plane. Suppose that the density at each point is proportional to the cube of the distance from the point to the origin. Write an expression for the density function ρ in polar coordinates, and use it to find the mass of the lamina.

XI. Use a Riemann sum for this partition of the rectangle $R = [0, 2] \times [0, 2]$ to estimate $\iint_R \sqrt{x^2 + y^2} \, dA$, choosing as the sample points the points closest to the origin. Leave the Riemann sum as an unsimplified sum of terms, possibly involving square roots.

XII. Consider the paraboloid $z = x^2 + y^2$ and the saddle surface $z = x^2 - y^2$. Tell how one can know that if D is any domain in the xy-plane, then the areas of the portions of these two surfaces having their (x, y) coordinates in D are equal.