Mathematics 2443-006H
Examination I
February 21, 2001

Instructions: Find the easier points and do those problems first. Give brief, clear answers.

I. The figure to the right shows the graph of \(z = \sqrt{2 - x^2 - 2y^2} \).

1. Rewrite the defining equation in the form \(\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1 \).
 Label the values at the five points where the graph intersects one of the coordinate axes.

2. Label the point \(P \) on the graph where \(x = 1/\sqrt{2} \) and \(y = -1/2 \).

3. Calculate the vectors \(\vec{v}_x \) and \(\vec{v}_y \) (the vectors tangent to the graph and having components 1 in the \(\vec{i} \) direction, for \(\vec{v}_x \), or in the \(\vec{j} \) direction, for \(\vec{v}_y \).)

4. At the point \(P \) on the graph, draw the vectors \(\vec{v}_x \) and \(\vec{v}_y \).

5. Use \(\vec{v}_x \) and \(\vec{v}_y \) to calculate a normal vector to the surface at the point \(P \).

II. Calculate the following partial derivatives.

1. \(\frac{dg}{dx} \) if \(g(t_1, \ldots, t_n) = 2\sqrt{t_1^2 + t_2^2 + t_3^2 + \cdots + t_n^2} \) and \(\frac{dt_i}{dx} = t_i^{i+1} \).

2. \(z_\theta \) if \(z \) is a function of \(x \) and \(y \), where \(x = r \cos(\theta) \) and \(y = r \sin(\theta) \). Noting that \(x_\theta = -y \) and \(y_\theta = x \), give the answer purely in terms of \(z_x, z_y, x, \) and \(y \).

3. \(z_{\theta\theta} \) if \(z \) is a function of \(x \) and \(y \), where \(x = r \cos(\theta) \) and \(y = r \sin(\theta) \). Give the answer purely in terms of \(z_x, z_y, x, \) and \(y \).

III. The figure to the right shows the level lines for a certain function \(g \) near a point \(P \) in the \(xy \)-plane. Assuming that the level lines give a good guide to the values of \(g \) at \(P \), answer the following.

1. Is \(\frac{\partial g}{\partial x} \) positive, negative, or 0 at \(P \)?

2. Is \(\frac{\partial^2 g}{\partial x^2} \) positive, negative, or 0 at \(P \)?

3. Is \(\frac{\partial^2 g}{\partial x \partial y} \) positive, negative, or 0 at \(P \)?

4. Draw the gradient of \(g \) at \(P \).

5. Draw a direction at \(P \) for which the directional derivative is slightly less than 0.
IV. Let \(f(x,y) = c \) be a level curve of a differentiable function \(f \). Verify using the chain rule that \(\nabla f \) is perpendicular to this level curve at each point (start by letting \(\gamma(t) = (x(t), y(t)) \) be a parameterization of the level curve, and examine \(\frac{d}{dt}(f(\gamma(t))) \)).

V. Using implicit differentiation, calculate \(dR \) if \(\frac{1}{R^2} = \frac{1}{R_1^2} + \frac{1}{R_2^2} + \frac{1}{R_3^2} \).

VI. Calculate the rate of change of \(f(x,y) = e^{x^2+y^2} \) at the point \((1,1) \) in the direction toward \((2,0) \):

1. Algebraically, using \(\nabla f \).
2. Geometrically, by considering level curves.

VII. Partition the interval \(0 \leq x \leq 1 \) into three intervals with \(\Delta x_1 = 0.4 \), \(\Delta x_2 = 0.1 \), and \(\Delta x_1 = 0.5 \). For the function \(f(x) = x^2 \), calculate the largest and smallest Riemann sums that can be formed using this partition (the answers are 0.141 and 0.589).

VIII. Show that \(\lim_{(x,y) \to (0,0)} \frac{xy}{x^2 + y^4} \) does not exist.

IX. Show that \(\lim_{(x,y) \to (0,0)} \frac{xy^2}{x^2 + y^4} \) does not exist.

X. Show that \(\lim_{(x,y) \to (0,0)} \frac{xy^5}{x^2 + y^4} = 0 \) by using an estimate of \(\left| \frac{xy^5}{x^2 + y^4} \right| \).

XI. Calculate an equation for the tangent plane to the surface \(e^{yz} = e^x \) at the point \((1,1,2) \). (Express the surface as a level surface for a certain function of three variables. Do not bother to simplify the equation of the plane.)

XII. Let \(D \) be the region \(\{ (x,y) \mid x^2 + y^2 \leq 1, y \leq 0 \} \) in the \(xy \)-plane, and consider an integral \(\iint_D f(x,y) \, dA \) over the region \(D \).

1. Supply limits for integrating first with respect to \(x \) and then with respect to \(y \).
2. Supply limits for integrating first with respect to \(y \) and then with respect to \(x \).

XIII. Bonus: Calculate \(\lim_{n \to \infty} \sum_{j=1}^{n} \frac{\sin(2 + j/n)}{n} \).