Instructions: Give brief and to-the-point answers.

- **I**. Let $f_n : E \to \mathbb{R}$ be a sequence of functions, and let $f : E \to \mathbb{R}$ be a function.
- (12)
 - (a) Define what it means to say that the sequence f_n converges uniformly to f.
 - (b) Let $M_n = \sup_{x \in E} |f_n(x) f(x)|$. Prove that if the f_n converge uniformly, then $\lim M_n = 0$.
 - (c) State the Cauchy Criterion for Uniform Convergence of a Sequence of Functions.
- II. (a) State the Mean Value Theorem for Integrals.
- (11)
 - (b) Show that the Mean Value Theorem for Integrals need not hold if the function is not continuous.
 - (c) What major theorem is used in the proof of the Mean Value Theorem for Integrals?
- III. Take as given the fact that if $g:[a,b]\to\mathbb{R}$ is a Riemann integrable function that satisfies $g(x)\geq 0$ for all
- (8) $x \in [a,b]$, then $\int_a^b g \ge 0$. Let $f: [a,b] \to \mathbb{R}$ be a continuous function, and suppose that $\int_a^b f^2 = 0$. Let $F: [a,b] \to \mathbb{R}$ be the function defined by $F(x) = \int_a^x f^2$.
 - (a) Verify that F(x) = 0 for all $x \in [a, b]$.
 - (b) Deduce that f(x) = 0 for all $x \in [a, b]$.
- **IV**. Take as given the following fact: If $f:[a,b]\to\mathbb{R}$ is a Riemann integrable function, and $g:[a,b]\to\mathbb{R}$ is
- (8) a function with g(x) = f(x) if $x \neq c$, then g is Riemann integrable and $\int_a^b g = \int_a^b f$. Prove the following fact: If $f: [a,b] \to \mathbb{R}$ is a Riemann integrable function, and $g: [a,b] \to \mathbb{R}$ is a function with g(x) = f(x) if $x \notin \{c_1, c_2, \ldots, c_n\}$, then g is Riemann integrable and $\int_a^b g = \int_a^b f$.
- V. Without verifying details, give examples of the following:
- (12)
 - (a) A sequence f_n of Riemann integrable functions that converges to a Riemann integrable function f, but the sequence of real numbers $\int_a^b f_n$ does not converge to $\int_a^b f$.
 - (b) A sequence of functions that converges uniformly on [0, M] for each M > 0, but does not converge uniformly on $[0, \infty)$.
 - (c) A sequence of functions f_n that converges uniformly on [-1,1], but whose derivatives at zero $f'_n(0)$ do not converge.
 - (d) A sequence of continuous functions on [0,1] that converges to a continuous function pointwise, but not uniformly.
- **VI**. Let $f:[a,b] \to \mathbb{R}$ and $g:[a,b] \to \mathbb{R}$ be bounded functions, and let P be a partition of [a,b]. Prove the
- (6) following fact, which was a key step in proving that $\int_a^b f + g = \int_a^b f + \int_a^b g$: $M_i(f+g) \leq M_i(f) + M_i(g)$.