Instructions: Give brief and to-the-point answers (do not make the exam longer than it is). Make use of the Riemann-Lebesgue Theorem whenever possible.

- I. (a) State the Mean Value Theorem.
- For parts (b) and (c), suppose that $f: \mathbb{R} \to \mathbb{R}$ is a function satisfying the hypotheses of the Mean Value Theorem.
 - (b) Show that if there exists a number M such that $|f'(x)| \leq M$ for all $x \in \mathbb{R}$, then f is uniformly continuous on \mathbb{R} .
 - (c) Show that if f'(c) = 0 for all $c \in [a, b]$, then f is constant on [a, b] (hint: apply the MVT on [a, x] for each $x \in (a, b]$).
- **II**. Let $f: [a,b] \to \mathbb{R}$ be a bounded function and let X and Y be partitions of [a,b].
- (14) (a) If $X = \{x_0, x_1, \dots, x_n\}$, define $m_i(f)$, Δx_i , and $\underline{S}(f; X)$.
 - (b) What can be said about the relation between $\overline{S}(f;X)$ and $\underline{S}(f:Y)$?
 - (c) If X refines Y, what can be said about the relation between S(f;X) and S(f:Y)?
 - (d) Define $\underline{S}(f)$ and $\overline{S}(f)$. Define what it means to say that f is Riemann integrable. Assuming that f is Riemann integrable, what is the definition of $\int_a^b f$?
- III. Let $f: [0,1] \to \mathbb{R}$ be defined by f(0) = 0 and $f(x) = x^2 \sin\left(\frac{1}{x^2}\right)$ if $0 < x \le 1$.
 - (a) Sketch the graph of f.
 - (b) Use the definition of f'(c) as a limit to verify that f'(0) exists and determine its value (you may use either the Squeeze Theorem for Limits or the ϵ - δ methodology to calculate the limit).
 - (c) Is f Riemann integrable on [0,1]? Why or why not?
- **IV**. Without giving any verifications, tell an example of a differentiable function $f: \mathbb{R} \to \mathbb{R}$ so that f'(0) = 1,
- (5) but f is not increasing on any open interval that contains 0.
- **V**. Give an explicit partition P with n = 5 (i. e. P is of the form $\{x_0, x_1, x_2, x_3, x_4, x_5\}$) of the interval [0, 3]
- (6) with ||P|| = 1.7.
- **VI**. Suppose that A and B are bounded subsets of \mathbb{R} . Define A + B to be $\{a + b \mid a \in A, b \in B\}$.
- (8) (a) Show that $\sup(A) + \sup(B)$ is an upper bound for A + B.
 - (b) Show (making use of known basic facts about sup) that if $\epsilon > 0$ then $\sup(A) + \sup(B) \epsilon$ is not an upper bound for A + B.
- **VII.** Let $f: [0,1] \to \mathbb{R}$ be defined by f(0) = 0 and f(x) = 1/n, if $\frac{1}{n+1} < x \le \frac{1}{n}$ for n = 1, 2, ...
 - (a) Sketch the graph of f.
 - (b) Without giving proof, determine $\{x \in [0,1] \mid f \text{ is not continuous at } x\}$.
 - (c) Is f Riemann integrable on [0,1]? Why or why not?