February 11, 2000

- I. Take as given the fact that the sine function is continuous. Making use of a theorem we proved in class,
- (5) prove that there exists a number a so that sin(a) = 0.776.
- II. Let $f:(0,\infty)\to\mathbb{R}$ be defined by $f(x)=\frac{1}{x}$.
- (8)
 - (a) Prove that $\lim_{x\to\infty} f(x) = 0$.
 - (b) Prove that $\lim_{x\to 0} f(x) = \infty$.
- III. Let $f: \mathcal{D}(f) \to \mathbb{R}$. Let x_0 be a point in $\mathcal{D}(f)$, and let A be a subset of $\mathcal{D}(f)$. Give precise definitions of
- (6) the following.
 - (a) f is continuous at x_0
 - (b) f is continuous on A
 - (c) f is uniformly continuous on A
- IV. Define what it means to say that a subset U of \mathbb{R} is open. Define what it means to say that a subset X of
- (10) \mathbb{R} is bounded. Define what it means to say that a subset X of \mathbb{R} is compact. Prove that if X is compact, then X is bounded.
- **V**. Write the epsilon-delta definition of the statement that f is not continuous at x_0 .
- (5)
- **VI**. Sketch the graph of the following function: $f: \mathbb{R} \to \mathbb{R}$, f(x) = x + 1 if $x \leq 2$, f(x) = x if 2 < x. Give a
- (6) specific open subset U of \mathbb{R} whose preimage $f^{-1}(U)$ is not open. Tell what its preimage set is, and verify that it is not open.
- **VII.** Let $f:[0,1] \to [0,1]$ be continuous. Making use of a major theorem that we proved in class, prove that
- (5) there is a number $c \in [0, 1]$ such that f(c) = c.
- **VIII.** Prove that the function $f:(0,1]\to\mathbb{R}$ drawn here is not uniformly continuous.
- (6)