Instructions: Give brief and to-the-point answers.

- I. (a) Give the ϵ - δ definition of $\lim_{x\to x_0} f(x) = L$.
- (13)
 - (b) Use the ϵ - δ definition to prove that $\lim_{x\to 1} 1 + x = 2$.
 - (c) Use the ϵ - δ definition to prove that $\lim_{x\to 1} (1+x)^2 = 4$.
 - (d) Give the precise definition of $\lim_{x\to\infty} f(x) = L$.
 - (e) Give the precise definition of $\lim_{x\to x_0} f(x) = \infty$.
- II. Define $f: \mathbb{R} \to \mathbb{R}$ by $f(x) = \sin(1/x)$ if $x \neq 0$ and f(0) = 0. Use proof by contradiction and the ϵ - δ
- (4) definition of continuity to prove that f is not continuous at $x_0 = 0$.
- III. Suppose that $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ are continuous functions. Use the ϵ - δ definition of continuity to
- (4) prove that f + g is continuous.
- **IV**. (a) Define what it means to say that a function $f: E \to \mathbb{R}$ is uniformly continuous.
- (5)
 - (b) Use the Mean Value Theorem to prove that if $f: \mathbb{R} \to \mathbb{R}$ is a differentiable function and there is a number M so that $|f'(x)| \leq M$ for all $x \in \mathbb{R}$, then f is uniformly continuous.
- V. Write the ϵ - δ definition of the statement that f is not continuous at x_0 .
- (3)
- **VI**. Let $f: [0,1] \to [0,1]$ be continuous. Prove that there is a number $c \in [0,1]$ such that f(c) = c.
- (4)
- VII. Without verifying details, give examples of the following.
- (10)
 - (a) A function $f: \mathbb{R} \to \mathbb{R}$ which is continuous at every irrational number and discontinuous at every rational number.
 - (b) A sequence f_n of Riemann integrable functions on [0, 1] that converges to a Riemann integrable function f, but the sequence of real numbers $\int_a^b f_n$ does not converge to $\int_a^b f$.
 - (c) A sequence of Riemann integrable functions on [0,1] that converges to a function which is not Riemann integrable.
 - (d) A sequence of functions on [0, 1], each of which is continuous at all $x \neq 1/2$ but is discontinuous at x = 1/2, that converges uniformly to a continuous function.
 - (e) A bounded function $f:(0,1)\to\mathbb{R}$ which is continuous but not uniformly continuous.
- **VIII**. Give an example of a function $f: \mathbb{R} \to \mathbb{R}$ which is continuous but not differentiable at every $x \in \mathbb{R}$. (First,
- (4) define f_1 by giving its graph, then define functions f_n , and use a series to define f.)
- **IX**. Let $f: [2,4] \to \mathbb{R}$ be a continuous function. Suppose that f(2)=2, f(3)=4, and f(4)=3. Prove that f(3)=4, and f(4)=3.
- (4) is not monotone.

X. (a) Define what it means to say that a set E of real numbers has measure 0.

(10)

- (b) Prove that the set $E = \{1/n \mid n = 1, 2, 3, \dots\}$ has measure 0.
- (c) State the Riemann-Lebesgue theorem.
- (d) Use the Riemann-Lebesgue theorem to prove that if $f:[a,b]\to\mathbb{R}$ and $g:[a,b]\to\mathbb{R}$ are Riemann integrable, then their sum $f+g:[a,b]\to\mathbb{R}$ is Riemann integrable.
- **XI**. Let $\sum_{j=1}^{\infty} f_j$ be a series of functions, each with domain E.
 - (a) Define what it means to say that $\sum_{j=1}^{\infty} f_j$ converges to $f: E \to \mathbb{R}$.
 - (b) Define what it means to say that $\sum_{j=1}^{\infty} f_j$ converges uniformly to $f: E \to \mathbb{R}$.
 - (c) Suppose that a power series $\sum_{n=0}^{\infty} a_n x^n$ has radius of convergence R=5. What can be said about the convergence behavior of $\sum_{n=0}^{\infty} a_n x^n$, and about where it is uniform?
- **XII.** Let A and B be nonempty sets of real numbers which have upper bounds. Suppose that $\forall a \in A, \exists b \in A, \exists b \in B, a \leq b$. Prove that $\sup(A) \leq \sup(B)$.
- **XIII**. Use the Weierstrass M-test to verify that the series $\sum_{n=0}^{\infty} x^n$ converges uniformly on the interval [-1/2, 1/2].
- **XIV.** Let $f:[a,b] \to \mathbb{R}$ and $g:[a,b] \to \mathbb{R}$ be bounded functions, and let P be a partition of [a,b]. Prove the (4) following fact, which is a key step in proving that $\int_a^b f + g = \int_a^b f + \int_a^b g$: $m_i(f+g) \ge m_i(f) + m_i(g)$.