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Does the world really need another article about Pythagorean triples? Here is why we
think so. The set of Pythagorean triples has a lot of interesting structure, which has
intrigued both amateur and professional mathematicians. It is the topic of an exten-
sive mathematical literature, almost all of which relies on an enumeration of primi-
tive Pythagorean triples that has been known since ancient times. But it is not widely
known that there is a different enumeration, based on two simple geometric parame-
ters that we call the height and the excess. In this article, we will use these parameters
to make some known results about Pythagorean triples more transparent. And we will
use them to achieve a better understanding of one natural group structure on the set of
primitive Pythagorean triples, and to discover another one.

Recall that a Pythagorean triple (PT) is an ordered triple (a, b, ¢) of positive inte-
gers such that a> 4+ b*> = ¢>. When a and b are relatively prime, the triple is a primitive
PT (PPT). Each PT is a positive integer multiple of a uniquely determined PPT.

The height and excess parameters are shown in FIGURE 1. For a PT (a, b, ¢), the
height h is just ¢ — b, and the excess e is a + b — c. The term excess arises from the
fact that e is simply the extra distance one must travel when going along the two legs
instead of the hypotenuse.

Figure 1 Height and excess of a Pythagorean triangle

Not all combinations of & and e can occur in an integer-sided triangle. We will see
that, for a given #h, the possible values of e are exactly the integer multiples of a certain
integer d. The integer d is called the increment, and it is related to 4 in a simple way:
d is the smallest positive integer whose square is divisible by 24. Since e is a multiple
of d, we can write e = kd for a positive integer k. As will be verified in Theorem 1,
associating k and & to (a, b, c¢) sets up a one-to-one correspondence of the PTs with
the pairs of positive integers (k, i). For example, everybody’s favorite PT (3, 4, 5)
corresponds to the pair (1, 1), and (4, 3,5) and (5, 12, 13) correspond to (1, 2) and
(2, 1) respectively, while the nonprimitive PTs (48, 189, 195) and (459, 1260, 1341)
correspond to (7, 6) and (21, 81). We call this correspondence the height-excess enu-
meration.

In the rest of this article, we will see various uses of the height and excess param-
eters. The overarching goal is fo find structure on the set of Pythagorean triples. To
best understand a particular structure on the set of PTs, we need to view it with the
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right coordinates. The classical enumeration, which we will detail later, assigns a pair
of relatively prime integer coordinates (m, n) to each PPT. The height and excess pa-
rameters lead to several other systems of coordinates, and we will use whichever of
these systems of coordinates seems best for viewing the structure that we are trying to
understand. Besides the k- coordinates coming from the height-excess enumeration,
and a closely-related kind of coordinates on PPTs, called k-g coordinates, we will use
a-h coordinates, in which (3, 4, 5) is [3, 1], and e-h coordinates, in which (3, 4, 5) is
(2, 1). Each of these coordinate systems reveals some of the structure of the set of PTs
that is hidden when the PTs are written in the conventional way. In fact, it sometimes
seems to me that (a, b, ¢) is the most unenlightening way to think about a PT.

The height-excess enumeration

Our first theorem will establish the height-excess enumeration of PTs. It actually enu-
merates all the triples of (not necessarily positive) integers satisfying the Pythagorean
relation a® + b* = ¢*. These are called generalized Pythagorean triples (GPTs). A
GPT (a, b, ¢) is called primitive when a and b are relatively prime. Each GPT is a
positive integer multiple of a uniquely determined primitive GPT.

The PTs (a, b, ¢) and (b, a, c) both correspond to the same geometric right triangle.
We make the arbitrary choice of thinking of the one with @ < b as representing this
right triangle, so we use the term Pythagorean triangle to mean a PT with a < b.
Theorem 1 will identify, in terms of k and %, the PTs that are triangles, and the PTs
that are primitive.

In the statement of Theorem 1, the symbol e does not appear explicitly. The excess
is the number dk. Also, a nonzero integer is called square-free if it is not divisible by
the square of any prime.

THEOREM 1. (THE HEIGHT-EXCESS ENUMERATION) For any (k,h) in the set
7 x 7. of pairs of integers, define P(k, h) as follows: If h is nonzero, write it as pq*
with p square-free and q positive, and associate with it the number d equal to 2pq if
p is odd, and to pq if p is even. Put

2h 2h

if h # 0, and put P(k,0) = (0, k, k). Then P is a bijection from Z x 7 to the set of all
GPTs (a, b, c). Moreover,

dk)? dk)?
P(k,h)z(h+dk,dk+u,h+dk+( ) )

1. P(k, h) is primitive if and only if k and h are relatively prime and either h = +q°
with q odd, or h = +2¢°.

2. P(k,h) is a PT if and only if both k and h are positive, and is a Pythagorean
triangle when in addition k > ~/2h/d.

Theorem 1 gives a recipe for finding the parameters k and % for any GPT (a, b, c).
If b = c, then the triple is (0, k, k) = P (k, 0). Otherwise, k and & are calculated as
follows.

To find (k, h) from (a, b, ¢)

1. Puth =c—b.

2. Write h = pq* with p square-free and positive.
3. Putd =2pgq if pisodd, and d = pq if p is even.
4. Putk = (a — h)/d.
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For example, for (459, 1260, 1341), we have 7 = 1341 — 1260 = 81, so p =1
and ¢ = 9, giving d = 18, and k = (459 — 81)/18 = 21, so (459, 1260, 1341) is
P(21, 81).

The proof of Theorem 1 uses only the basic properties of prime factorization and
relatively prime integers, and some college algebra. It could be skipped on a first read-
ing, in order to get on to some of the flashier applications of height and excess.

The first step of the proof is to develop the key properties of d. As usual, the notation
x | y means that the integer y is evenly divisible by the integer x.

LEMMA 1. Let h be a nonzero integer with associated increment d, as defined in
Theorem 1. Then 2h | d*. If D is any integer for which 2h | D?, then d | D.

Proof. The first assertion is immediate from the definition of d. For the second,
we may assume that D is nonzero. Considering prime factorizations, we see that if
2h = 2pg?* divides D?, then ¢ | D, so D = D;q and 2p | D?. Since p has distinct
prime factors, it follows that p | Dy, and if p is odd then 2p | Dy, sod | D. [ |

Now for the actual proof of Theorem 1. For 2 = 0, all its assertions are straighfor-
ward to check, so we assume that &7 # 0. By Lemma 1, every expression P(k, h)
has integer entries, and algebra shows that it is Pythagorean. Using h = ¢ — b,
e = a + b — ¢, and the Pythagorean relation, more algebra shows that for all GPTs,

e’ e’
ab7 =\h ) _ah A7 )
(a,b,c) ( +e €+2h +e+2h)

The Pythagorean relation implies that e> = 2(c — a)(c — b), so 2h | ¢>. By Lemma 1,
e is divisible by d, say e = dk. So every GPT has the form P (k, k). Since the GPT
determines /, e, and d uniquely, k is also determined, showing that P is injective.

Next we identify the primitive GPTs. We use the notation ged(x, y) to denote the
greatest common divisor of two integers x and y, not both 0. For 2 = 0, P(k,0) =
(0, k, k) is primitive exactly when k = %1, and (%1, 0) are exactly the pairs with
h = 0 that satisfy the given conditions. Suppose that 7 # 0. When (a, b, ¢) is a primi-
tive PT, ¢ — a and ¢ — b must be relatively prime. For suppose that both were divisible
by some prime 7. Then r divides the sum (¢ — a)? + (¢ — b)> = (3¢ — 2a — 2b)c.
Now r could not divide ¢, since then it would divide both a and b. So r divides
3c —2a —2b =2(c —a) + 2(c — b) — c. Again we have the contradiction that r di-
vides c. We conclude that ¢ — a = (k>d?)/(2h) and ¢ — b = h are relatively prime. For
p odd, these are 2pk? and pgq?, so p = %1, g is odd, and ged(2k, ¢) = 1. For p even,
they are k*p/2 and pq?, so p = %2 and ged(k, 2g) = 1. Thus ged(k, h) = 1 in both
cases. Conversely, suppose that i and k satisfy the given conditions. For 1 = +¢?,
(a,b) is £(q(qg + 2k), 2k(g + k)). If r is a prime dividing both entries, then r # 2
since the first entry is odd. So r must divide g or ¢ + 2k, and must divide k or g + k.
Any of the four possible combinations leads to r dividing both ¢ and k, a contradiction.
For h = £24¢°, (a, b) is =(2q(k + q), k(g + 2k)) and the reasoning is similar.

For the additional remarks, suppose first that P(k, h) = (a, b, c) is a PT, that
is, that all three of a, b, and c¢ are positive. Since P(k,0) = (0, k, k), we must
have h # 0. Since ¢ = (h* + (e + h)?)/(2h), c is positive exactly when i > 0. For
h > 0, b = dk + (dk)?/(2h) is positive exactly when (h + dk)*> > h?, that is, either
h+dk < —h or h +dk > h. In the first case, a < 0 and in the second case a > 0.
We conclude that P(k, i) is a PT exactly when both # and k are positive. For PTs,
the form given in Theorem 1 is a triangle exactly when h + dk < dk + (dk)*/(2h),
which says that k > «/2h/d. ]
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We will now list some properties of the height-excess enumeration. Except for the
description of the excess as twice the inradius, they are not used in this article, but some
might be of interest in other contexts. We will finish this section with some history of
the enumeration.

The number k equals 4A/(d P), where A is the area ab/2 and P is the perime-
ter a + b + c. This can be seen using the identity e P = 4 A, which follows from the
Pythagorean property. For a right triangle, e is twice the inradius, that is, twice the
radius of the largest circle that can be inscribed in the triangle. To see this, just draw
the radii from the center of this circle to the three points where it meets the sides and
use the definition of excess.

When 4 > 0 and k > 0, k is the ordinal of (a, b, ¢) in the sequence of PTs of
height 4, in order of increasing values of any one of: a, b, b/a, A, P. This illustrates
what I like most about the height-excess enumeration: unlike the classical enumeration
(which we will discuss later), it brings order to the apparent chaos of nonprimitive
triples, and puts them on an equal footing with the overprivileged primitive triples.

For h > 0, d satisfies 2/h < d < 2h, with the lower bound achieved when p=1
and the upper bound when ¢ = 1. Thus, the size of d relative to 24/ is a rough
measure of how far & is from being a perfect square. In fact, the expression d*/(2h)
that appears in Theorem 1 is exactly p/2, when p is even, or 2p, when p is odd.

As far as we can determine, the first version of the height-excess enumeration for
PTs is due to M. G. Teigan and D. W. Hadwin [23]. The parameters used there are
x = h, y = e*/(2h) (which, being ¢ — a, is the height of (b, a, ¢)), and z = e. It was
noted that (1) z is even, and (2) 2xy = z%, and conversely that any triple of positive
integers (x, y, z) satisfying (1) and (2) determines a PT, which is primitive exactly
when gecd(x, y) = 1. The height-excess enumeration was also found by H. Kloster-
gaard [16]. The integer n in [16] is our ¢/2, and the integer called d there is our .
Klostergaard observed that / divides e?/2, and used this to describe an enumeration of
all Pythagorean triangles by finding the possible heights associated to each increasing
integer value of ¢/2; also, e/2 is described as twice the area-perimeter ratio.

More explicit renderings of the height-excess enumeration were given by B. Daw-
son [7] and M. Wéjtowicz [26]. For positive i, Dawson’s parameterization is (r, /)
where r = a/d if h is even and r = a/d — 1/2 if h is odd [7]. This shifts the first
coordinate so that (0, #) corresponds to the GPT of height 4 with the smallest nonneg-
ative value of a. Wéjtowicz [26, Theorem 6] gave a formula equivalent to the one in
Theorem 1. Also, A. Grytczuk [9] obtained a ring structure (without unit) on the set P,
of GPTs of height & by transferring the usual structure on the subring dZ of Z to P, via
the bijection sending P (k, h) to e, and this was elaborated upon by Wéjtowicz [25].

The height-excess enumeration for PTs is implicit as well in an article written by
the father-and-son combination of P. W. Wade and W. R. Wade [24]. They found the
number d, developed a recursion formula that produces all PTs of height 4, and used
the classical enumeration to give a full verification that the recursion produces all PTs
in the cases i = ¢* and h = 2¢>. In an article that I wrote with Elizabeth Wade [18],
we proved Theorem 1 for the case of PTs, and used it to give a quick verification of
the Wade-Wade recursion for all positive 4. In fact, the recursion gives P(k + 1, h) in
terms of P(k, h).

Elizabeth is not related to P. W. and W. R.

PTs of a given excess The problem of finding all PPTs and PTs (a, b, ¢) with a
equal to a given number has been solved several times in the literature [1, 4, 14]. In
fact, there is currently a website where one can enter a value of a and receive a list of
the PTs [5]. As an application of Theorem 1, we are going to obtain a similar count of
the number of PTs with a given excess. Our result gives the exact counts both of PTs
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and PPTs, and, as we will explain, its proof provides an effective procedure for listing
them. We remark that e is always even, since (among many possible reasons) e = dk
and d is always even.

THEOREM 2. For an even positive integer E, write E as 20 p{' - - - p* for distinct
odd primes p;, with all o; > 0. Then the number of PTs of excess E is

Qa0 l—[(2a,~ +1),
i=1

of which exactly 2"*! are primitive.

The PTs in Theorem 2 occur in pairs (a, b, ¢) and (b, a, ¢), so to obtain the number of
Pythagorean triangles of excess E we divide the number of PTs by 2.

Proof. We first find the PPTs P (k, h) with excess E. By statement 1 of Theorem 1,
there are two cases. If h = ¢, then d = 2q, ¢ is odd, and gcd(k, g) = 1. Thus we
need to factor E = 2% p{' ... p as 2gk. Since ¢ and k can have no prime factors in
common, when ¢ has some powers of a prime it must have them all. Thus, the choices
for g are the 2" products of the form pZ’l pff’, where iy < --- < i,. This yields
the PPTs P(E/2q, g*) with d = 2q and excess E. Similarly, if h = 2¢>, then again
d = 2gq, but gcd(k, 2g) = 1, so k must be odd. In this case there are 2" choices for k
and so 2" PPTs of the form P(E/2q,2q*). Thus we have a total of 2"*! choices for
PPTs of excess E.

To include nonprimitive triples, we need to count 2’ *! triples for each divisor of E

of the form D = 2fp ﬁ” ﬂ” (with all exponents positive). These are the PPTs
of excess D, and multlphed by E/D they give trlples of excess E. Each term in
the product 2aq ['_, 2a; + 1) has the form 2" *'agey, - - - o, . To obtain a divisor D

Bi| ; . .
of the form 2% pi1 plﬁ ", one has «q choices for By and «;; choices for each f;,

giving apat;, - - - @, p0s51b111ties Each such choice produces 2"*! triples, so the num-

ber of triples arising from the divisors of the form D = 2/ pﬁ'1 . pf}” is exactly

2 Haga;, - [

r

The proof of Theorem 2 gives a procedure to find the PTs or Pythagorean triangles

By

of excess E. Take each even divisor D of E, written as D = 20 Pi, pi’i . For each

of the 2" choices of {j,, ..., ji} C {i1,..., i}, writte D = xy with y = pfi“ ---pfk’k.
Each such factorization gives two PTs %P(x /2, y%) and %P(y, x2/2) of excess E.
They have the same values of a and b, but in reverse order. The one with smaller a
gives the Pythagorean triangle.

For example, for E = 36 = 22 - 32 there are ten triangles, including two primitives.
The procedure finds them to be

(37,684, 685), (38,360,362), (39,252,255), (40, 198,202),
(42, 144, 150), (44,117,125), (45,108,117), (48,90, 102),
(54,72,90), and (60, 63, 87).

FIGURE 2 shows these ten triangles, with the two primitive ones, (37, 684, 685) and
(44, 117, 125), emphasized. The hypotenuses of these ten triangles do not actually
intersect in a single point, as the figure may seem to suggest. In fact, for no three
triangles of the same excess (Pythagorean or not, positioned as in FIGURE 2 in the first
quadrant with their right angles at the origin) do the hypotenuses intersect in a common
point; for as we noted in the previous section, the excess equals the diameter of the
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incircle, so the hypotenuses of the three triangles 7}, 7>, T; would be tangent to their
common incircle at distinct points p;, py, and p;. Selecting notation so that p;, pa,
and p; have increasing x-coordinate, we see that the intersections of the hypotenuses
of Ty and T; and of T, and T3 lie on opposite sides of p, in the hypotenuse of 7,. So
there is no common point.

60
” N

63 684

Figure 2 The ten Pythagorean triangles of excess 36

If we do not restrict to triangles with the same excess, then arbitrarily large numbers
of Pythagorean triangles, positioned as in FIGURE 2, may have hypotenuses sharing a
common point. For if p/q is a rational number greater than 1, the triangle with ver-
tices (p/q, 0), (0, 0), and (0, p/(p — ¢)) will have hypotenuse passing through (1, 1).
The length of its hypotenuse is the square root of p>((p — q)*> + ¢°)/(¢*(p — q)?),
which will be rational provided that p — ¢ and ¢ form the first two entries of a PT.
Selecting n such numbers p,/qi, ..., p./q., then multiplying by the number Q =
q1- - qu(p1 —q1) - - - (p, — q,) to clear the denominators of the fractions, we obtain
n Pythagorean triangles whose hypotenuses pass through the point (Q, Q). Can this
happen with primitive Pythagorean triangles?

The classical enumeration of primitive PTs We mentioned that most articles on
PTs rely on the classical enumeration, which dates to antiquity [4, 6]. It appears
in almost every text on elementary number theory, and goes like this. For any pair
(m,n) of positive integers with m > n, the triples (m> — n?, 2mn, m> + n?) and
(2mn, m* — n?, m* + n*) are Pythagorean and correspond to a single Pythagorean
triangle. If m and n are relatively prime and not both odd, then these PTs are primitive.
Conversely, an argument using prime factorization shows that every PPT has one of
these two forms, with m and n relatively prime and not both odd. So, taking these
triples for all relatively prime pairs (m, n) with m > n and not both odd produces
each PPT exactly once, while taking all their integer multiples gives each PT once. As
explained in [4], there is a slightly nicer refined classical enumeration. Start instead
with all relatively prime (m, n) with m > n, and write (m> — n?, 2mn, m* + n?) if one
of m or n is even (that is, when a is odd), and

m? — n? m? + n?
, mn,
2 2

if m and n are both odd (when a is even). This gives a list of PPTs, with each one
appearing exactly once.
For PPTs, the height-excess enumeration gives the following enumeration.

COROLLARY 1. Let (a, b, ¢) be a PPT.

1. If a is odd, then (a,b,c) can be expressed uniquely as P(k,q*) = (q*> + 2qk,
2qk + 2k*, g* + 2qk + 2k*) for some (k, q) with gcd(2k, q) = 1.

2. If a is even, then (a, b, c) can be expressed uniquely as P(k,2q*) = (2q*> + 2qk,
2qk + k2, 2q* + 2qk + k?*) for some (k, q) with ged(k, 2q) = 1.
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Proof. From Theorem 1, the P(k, ¢*) with ged(2k, ) = 1 are exactly the PPTs
with a odd, while the P (k, 2¢*) with gcd(k, 2g) = 1 are exactly those with a even.
|

How are the refined classical m-n coordinates related to the k-g coordinates coming
from Corollary 1? Starting from (m, n), we can use the recipe for finding (k, #) from
(a, b, ¢) to find that (k, h) = (n, (m — n)?) when one of m or n is even, and (k, h) =
(n, (m — n)*/2) when both are odd. So, k = n in either case, and (using the fact that
m > n) we have ¢ = m — n when one of m or n is even, and ¢ = (m — n)/2 when both
are odd. Suppose, on the other hand, that we start from (k, ¢). Then ¢ = m — n and
(m,n) = (k + q, k) when a is odd, while ¢ = (m —n)/2 and (m,n) = (k + 2q, k)
when a is even.

Corollary 1 is similar to the reparameterization of the classical enumeration ob-
tained in [6] by puttingm =i 4 jandn =i.

The Barning tree

A very different approach to enumerating the PPTs appears in works of a number
of authors [3, 10, 11, 13, 15, 17, 21]. We believe that the original version is due to
F. J. M. Barning [3]. He considered the set of PPTs with a even, regarding them as
column vectors. In (a, b, ¢) coordinates, the statement is quite striking:

THEOREM 3. Consider the following transformations, each having determinant 1:

-1 2 2 1 2 2 1 -2 2
A1=(—2 1 2), A2=<2 1 2), A3=<2 -1 2).
-2 2 3 2 23 2 -2 3

Every PPT (a, b, c) with a even can be obtained in exactly one way starting from
(4, 3, 5) and applying a sequence of the transformations A;.

In terms of structure on the set of PPTs, this can be interpreted as saying that the PPTs
with even a form the vertices of a directed tree with three edges leaving each vertex,
and one entering every vertex except (4, 3, 5), in such a way that multiplication of a
PPT by an A; sends it to one of the three vertices to which it leads in the tree. Because
of this interpretation, we call this enumeration the Barning tree. The PPTs with odd a
have a corresponding structure, as we will see near the end of this section.

12 +

8 1

5L
34

Figure 3 A portion of the Barning tree, viewed in k-q coordinates
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Our proof of Barning’s theorem uses the k-g coordinates on PPTs given in part 2 of
Corollary 1 (we have not been able to obtain a copy of Barning’s article, but our proof
is surely just a recasting of the original).

FIGURE 3 shows a portion of the Barning tree in k-g coordinates. The vertices are
some of the (k, ¢) pairs that correspond to PPTs, and the edges connect each vertex to
the three PPTs obtained from it by multiplying by one of the three matrices. Notice that
each vertex and its three offspring form a rectangle. The proof uses a clever process
for starting at any vertex and descending through the tree down to the vertex (1, 1),
which is the PT (4, 3, 5) in k-¢g coordinates. We call this process the Barning descent.

Proof of Theorem 3. For positive k and g with ged(k, 2g) = 1, write T (k, g) to
denote the PPT P (k, 2g%) = (2q% + 2qk, 2qgk + k*, 2g> + 2qk + k*) (when necessary
in calculations, assume that 7' (k, ¢) is a column vector rather than a row vector). In
particular, 7 (1, 1) = (4, 3, 5). Corollary 1 shows that these are exactly the PPTs with
a even. We calculate

6g> + 10gk + 4k>
A>T (k,q) = ( 8¢° + 10gk + 3k> ) )
10g% + 14gk + 5k*

Calling this vector (A, B, C), we use our usual recipe to write it as T (K, Q) by
computing that H = C — B =2(q +k)*>,s0 Q =q+k, D =2(q + k), and K =
(A — H)/D = (4¢° + 6gk + 2k?)/2(q + k) = k + 2q. Carrying out similar calcula-
tions for A; and As, we find:

A T(k,q) =T(k,q+k),
Ay T(k,q) =T (k+2q,k+q),
A3T(k,q) =T(k+2q,q).

Notice that when we write A; T (k, q) as T (K, Q), we have K < Q in the first case,
0 < K < 20 in the second, and 20 < K in the third.
In k-g coordinates, the matrices of A, A,, and Aj are

(1 0) (1 2) and (1 2).

1 1) 1 1) 0 1

Inverting these matrices, and, as before, denoting A; T (k, q) by T (K, Q), we find that:
AT'T(K, Q) =T(K, Q — K),
A'T(K.Q)=TQ2Q - K. K - 0),
A'T(K, Q) =T(K =20, Q).

These three cases are illustrated in FIGURE 4, where P; denotes A; 'T(K, Q).

JTKQ) JTKQ) < JTKQ)
l / B
pe P.
K<Q 0<K<2Q 20<K

Figure 4 The three cases in the Barning descent
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We are now set up for the Barning descent. Given any 7 (K, Q) with K > 1 or
QO > 1, the condition that gcd(K, 2Q) = 1 shows that either K < Q, QO < K < 20,
or 20 < K. Applying A;', A;', or A7" in the respective cases produces a T (k, q)
withk +¢g < K + Q. Repeating with this new PPT, we find a composition A; . A !
sending T'(K, Q) to T'(1, 1). The composition A;, --- A; moves T(1, 1) to T(K Q)
This is the only possible such composition, for any other one would lead to a case
where A; T (k',q") = A; T(k",q") with i # j, but this resulting element 7 (K’, Q)
would have to satisfy two of the mutually exclusive conditions K' < @',
QO <K' <2Q,and2Q’ < K'. ]

The Barning tree for the PPTs with a odd is essentially the same as the version for
a even, but we need not repeat the entire argument. Notice that for the matrix

010
M:(l 0 O),
0 0 1

one has (as usual thinking of (a, b, ¢) as a column vector) that M (a, b, ¢) = (b, a, ¢).
Since in a PPT, exactly one of a or b is even, multiplication by M converts the PPTs
with a odd into the PPTs with a even, and converts the even ones back into odds.
So, the exact statement of Theorem 3 holds after replacing each A; by MA; M and
replacing (4, 3, 5) by (3, 4,5).

Two articles by L. Palmer, M. Ahuja, and M. Tikoo [19, 20] contain some additional
information about the form of a matrix A that preserves the set of PTs.

Operations on PTs

In the remainder of this article, we will be examining algebraic operations on sets
of GPTs. There are many meaningless operations—for example, we could just make
a list of all the GPTs in some random order, associate the nth GPT to the natural
number 7, and “add” the PTs according to the way that their associated numbers add.
An operation is meaningful only when it reflects geometric or algebraic information
about the GPTs.

When developing algebraic structures, one often uses a procedure called projec-
tivization. This is actually a familiar process from everyday arithmetic. Start with
the set of ordered pairs of positive integers (m, n). Let us write this pair as m//n,
and consider the simple operation defined by m/n; *x m,//n, = mym,j/nin,. This
makes the set into a semigroup, that is, a set with an associative operation. In this case,
the operation has an identity element, since 1//1 * m//n = m//n, so the semigroup is
called a monoid. But it fails to be a group, since some elements (in fact, all elements
other than 1//1) do not have inverses. Now, we projectivize by declaring that m /n
and r//s are equivalent if they have integer multiples that are equal (that is, if there
are positive integers ¢ and u so that trmj/tn = ur//us). We write m/n for the set of
pairs equivalent to m /n. For example, 3/6 = {1/2,2/4,3/6,4/8, ...} = 1/2. The
equivalence relation has the property that if m,/n, = m,/n, and ry/s; = r,/s,, then
myri/nys; = myr,/n,s,, so the star operation induces a multiplication operation on the
equivalence classes defined by m /n x r/s = mr/ns. This operation still has an identity
element, 1/1, but now every element has an inverse, since a/b * b/a = ab/ba = 1/1.
The equivalence classes form the group Q. of positive rational numbers. One can
think of this process as erasing a lot of inessential structure on the fractions—the
structure that makes 24 different from 3//6—and after eliminating this unnecessary
structure, the higher-level algebraic structure of a group can exist on the set Q. of
equivalence classes.
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For the rational numbers, each equivalence class m /n contains exactly one fraction
in lowest terms, and two fractions are equivalent exactly when they are both multiples
of the same fraction in lowest terms. In everyday life, we often identify a rational
number with the unique fraction in lowest terms that it contains, as when we write
(2/3)(9/4) = 3/2. What we are really doing is multiplying the fractions 2//3 and 9//4
to obtain 18//12, then writing the equivalence class 18/12 as 3/2.

Another way to think of this equivalence relation is that the underlying meaning of
a fraction is a ratio, and 1/2 and 2 /4 just represent the same ratio by different sizes of
numbers. In the same way, we can think of the PTs (3, 4, 5) and (6, 8, 10) as the same
shape (similarity class) of right triangles, just being represented by different sizes of
triangles. The PPT (3, 4, 5) is the triple in “lowest terms” that represents this shape
(just as 1/2 is the “primitive” fraction that represents its ratio).

Using the analogous projectivization process on PTs, complex multiplication has
been used to construct a well-known operation on the set of PPTs (together with
(1,0, 1)) [8, 22]. We call it the Taussky-Eckert operation. One treats the first two
entries of (a, b, ¢) as a 4+ bi and mimics complex multiplication. If the product lies
in the second quadrant, multiply by —i to move it into the first quadrant. In formulas,
(al, b], Cl) ® (az, bz, C2) equals ((11(12 — blbz, albz + azbl, C1C2) if ayay; — b1b2 > O,
and equals (a1b, + a;by, b1by — aya,, ¢1¢3) if aja; — byb, < 0. This defines an oper-
ation on the set of PTs, plus the GPTs of the form (n, 0, n) with n > 0. The operation
is meaningful because it is multiplicative with respect to the c-coordinate.

The ® operation has an identity element (1, 0, 1), but elements other than (1, 0, 1)
do not have inverses, and a product of two PPTs need not be primitive. Again we save
the day by declaring that two of these GPTs are equivalent when they have integer
multiples that are equal. The operation respects the equivalence relation, so there is
an induced operation on the equivalence classes. Also, each equivalence class con-
tains exactly one primitive triple, so the equivalence classes can be identified with the
PPTs (along with (1, 0, 1)). At the level of PPTs, this means carrying out the opera-
tion, then dividing out by the greatest common divisor to obtain a new PPT. For the
equivalence classes, (b, a, ¢) is the inverse of (a, b, c), because (a, b, ¢) ® (b, a, c) =
(a@® + b2, 0, c*), which is equivalent to (1, 0, 1). So just as with fractions and rational
numbers, the equivalence classes have the higher-level algebraic structure of a group.
Eckert [8] showed that with this operation, the PTs form a free abelian group gener-
ated by the triples (a, b, p) witha > b and p a prime of the form 4n + 1 (Hlawka [12]
gives a discussion of this and other more advanced topics on PTs).

The Beauregard-Suryanarayan group

R. Beauregard and E. Suryanarayan [4] studied the operation on the set of GPTs de-
fined by (ay, by, ¢1) * (az, by, ¢3) = (a1az, bycy + bacy, biby + ¢ ¢2). This operation is
meaningful because it is multiplicative for a. By projectivizing, they obtained a group
structure on the set of primitive GPTs with a > 0 and ¢ > 0, and identified the result-
ing group with the group Q- of positive rational numbers.

We are going to analyze the Beauregard-Suryanarayan operation using a-h coordi-
nates. That is, we write a GPT (with & # 0) as [a, k], where a is the a from (a, b, ¢)
and 7 is the height. We will see that, in these coordinates, the operation behaves as co-
ordinatewise multiplication [a;, h ] * [as, ho] = [a1az, hih,]. This allows a simplified
treatment of the theory developed in [4]. The projectivized object obtained from the
set of all GPTs with & # 0 is naturally identified with the monoid {1, —1} x Q, the
Beauregard-Suryanarayan group being the subset identified with {1} x Q.. The PPTs
correspond to the semigroup {1} x Q..
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To get started, observe that the Pythagorean identity implies that for any GPT with
h #0,

2_h2 2 h2
@b.o)=(a L0 T
2h 2h

Thus, a and h determine a GPT, provided of course that a has the form a = h + kd.

We denote this GPT by [a, k], and call these the a-h coordinates of the GPT. It is a PT

exactly when a > h > 0, since this is exactly when both / and k are positive. Some

interesting examples of GPTs in a-h coordinates are:

1. [1,1] = (,0,1), [1,—-1] = (1,0, —-1), [-1,1] = (—1,0,1), and [—1, —1] =

(=1,0,—1).

2. [3,1]1 = (3,4,5) and [4, 2] = (4, 3, 5), while [2, 1] does not represent a GPT since
for h = 1 we have d = 2.

. For g odd, [¢, 11 = (¢, (¢° — 1)/2, (¢* + 1)/2).

. For g odd, [q, ¢°1 = (¢, (1 = ¢*)/2, (¢*> + 1)/2).

.Fors > 1,[2°,2] = (2°,2% 2 — 1,252+ 1).

.Fors > 1,[2°,2% 1= (2% 1 =2%"225241).

AN L AW

The result of the Beauregard-Suryanarayn operation,
(ar, by, c1) * (a2, by, ¢2) = (a1az, bica + bycy, biby + c1¢2),
has height
biby + ci1c2 — (bicy + bacy) = (1 — bi)(c2 — ba),
so written in a-h coordinates, the operation takes the form
lai, hi] * [a2, ha] = [a1az, hiha],

as claimed.

Let D denote the set of GPTs with & # 0. If [a, h] = (a, b, ¢) is a GPT and n is
a nonzero integer, then n[a, h] = (na, nb, nc) = [na, nh]. So just as for the Taussky-
Eckert operation, we can projectivize D by declaring that two GPTs are equivalent
if they have positive integer multiples that are equal. For example, the equivalence
class of (4,3,5) is {[4, 2], [8, 4], [12, 6], ...}. Each equivalence class contains one
primitive GPT, so the resulting set of equivalence classes G can be identified with the
set of primitive GPTs of nonzero height. The main result is:

THEOREM 4. Define ¢: G — {1, —1} x Q by sending [a, h] to (o (h), a/h), where
o (h) = 1 if h is positive and is —1 if h is negative. Then ¢ is an isomorphism.

Proof. 1t nylay, hi] = nalas, hy], then ¢([ay, hi]) = (o (nihy), niai/(n1hy)) =
(o (nahy), naay/(nyhy)) = ¢(laz, hy]), so ¢ is well-defined on equivalence classes.
The homomorphism condition ¢ ([a;, k1] * [az, h2]) = ¢([a1az, hih;]) is also imme-
diate. For surjectivity, it is enough to note that ¢ (£[1, 1]) = (£1, 1), ¢ (£[1, —1]) =
(£1,=1), ¢([0, 1]) = (1,0), ¢([4,2D) = (1,2), ¢([2,4]) = (1, 1/2), and for g an
odd prime, ¢ ([g, 1]) = (1, ¢) and ¢([q, ¢*]) = (1, 1/q), since products of these ele-
ments produce all elements of {1, —1} x Q. For injectivity, suppose that ¢ ([a;, h]) =
¢([az, hy]). Then h; and h, have the same sign, so replacing both [a;, h;] by
[—a;, —h;], if necessary, we may assume that both /; and &, are positive. Since

1 (a (a/h)* -1 (a/h)2+1)
_[avh] = PR ’ ’
h h 2 2
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we have h;[ay, hy] = hilay, h,]. Thatis, [a;, k] and [a,, h,] are projectively equiva-
lent, so they represent the same element of G. ]

Since Q. is the free abelian group on the set of primes, this shows that the pro-
jectivization of the submonoid consisting of all [a, 2] with a > 0 and 2 > 0 (that
is, the (a, b, c) with a > 0 and ¢ > 0) is an abelian group that is free on the set
{[4,2]} U{[p, 1] | p is an odd prime}. This is the Beauregard-Suryanarayan group. It
has an elegant geometric interpretation, which is explained in [4]. Finally, from the
formula for (a, b, c¢) in terms of a and h, we observe that [a, h] is a PT exactly when
a>0,h>0,and a > h, so the PPTs correspond to the semigroup {1} x Q..

The Beauregard-Suryanarayan monoid

To obtain the Beauregard-Suryanarayan group, we projectivized the Beauregard-
Suryanarayan monoid, thereby erasing the structure that was preventing it from being
a group. In fact, that lost structure is rather interesting, so we will now backtrack and
analyze the Beauregard-Suryanarayan monoid itself. This is a good example of how a
complicated algebraic object can be understood by studying it “at each prime.”

Recall that the Beauregard-Suryanarayan monoid D was the set of all GPTs [a, h]
with & # 0, with the operation [ay, h] * [a,, h,] = [a1az, h1h,]. We emphasize that
the operation is commutative, and remind the reader that a semigroup is a set with an
associative operation, while a monoid is a semigroup with an identity element.

The structure we will find involves a direct sum of monoids. The books that I have
checked either do not define a direct sum of monoids, or define it in a very abstract set-
ting using the language of categories. Here is a straightforward definition for the count-
able commutative monoids that we will be using. Suppose you have monoid S and a
(finite or infinite) collection of submonoids Sy, S», ... of S (a submonoid is a subset of
S that contains the identity element of S and itself forms a monoid under the operation
of S). When we say that S is the direct sum &S, = S| @ S, @ - - - of these submonoids,
we will mean that every nonidentity element of S can be written in a unique way (up
to order of the factors) as a product of nonidentity elements from finitely many of the
different submonoids. A good example to keep in mind is the counting numbers S =
{1, 2, ...}, with the operation of multiplication. Let 7P denote the set of prime num-
bers, and for each p € P, let S, be the submonoid {1, p, p?, p*, ...} of S. The fact
that each counting number factors uniquely into a product of prime factors says exactly
thatS=EB,,e7>S,, =PS5BS D -

We begin by determining how to identify the primitive GPTs from their a-h coor-
dinates.

PROPOSITION 1. For h # 0, [a, h] is primitive exactly when either

1. ais odd and h = +q* with q odd and gcd(a, h) = q, or
2. ais even and h = +2q° with gcd(a, h) = 2q.

Proof. Since [a, h] = —[—a, —h], we may assume that & > 0. Suppose that
[a, k] is primitive. If h = g2, then according to Corollary 1, a = g(g + 2k) with
gcd(2k, q) = 1, so ged(a, h) = q. If h = 2¢°, then a = 2q(q + k) with ged(2q, k) =
1, so ged(a, h) = 2q.

Conversely, suppose that [a, 4] is not primitive. If 4 is not of the form g with
g odd or 2¢?, then neither condition holds. Suppose that 2 = g°. Since the triple is
not primitive, statement 1 of Theorem 1 shows that k and 4 are divisible by an odd
prime p. Since a = ¢q(q + 2k), pq divides both a and h. This shows that gcd(a, h)
must be greater than g. The case of h = 2¢? is similar. ]
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Recall that if [a, k] is a GPT and »n is a nonzero integer, then n[a, h] = [na, nh].
Consequently, if a product of PTs is primitive, each factor must be primitive (al-
though a product of PPTs need not be primitive, for example (4, 3, 5) * (4, 3,5) =
2(8, 15, 17) ). Beauregard and Suryanarayan [4] proved the following unique factor-
ization theorem for the monoid D.

THEOREM 5. Let [a, h] € D be primitive. Write a as £2"p|'---png," -+ - g'n,
where r > 0, all r; and s; are positive, and {p\, ..., pm, q1, ..., qn} are distinct odd
primes, with the q; being the odd prime factors of a that are also factors of h. Then
la, h] factors uniquely as Sy * Py ([]/—,[p:, 117) * (H;zl[qj, qf-]xf), where Sy is one
of the four GPTs [£1, 1], and

(1) Py=[1,1]ifhis odd,
(i) Py=1[2",2]ifh =2 mod4, and
(i) Py =1[2",2>""1ifh =0 mod4.

In the latter two cases, r > 2.

We will now use a-h coordinates to give a proof of this result. Our proof will not use
Theorem 4. While Theorem 5 can be deduced as a corollary of Theorem 4, this does
not seem to shorten the proof if one wants the precise information about how the form
of Py depends on /. Theorem 4 can be deduced from Theorem 5 [4].

Proof. Factoring out S, allows us to assume that both a and & are positive. We first
prove the existence of the factorization. Suppose first that a is odd; by Proposition 1,
h = ¢* with ¢ odd and ged(a, h) = ¢. So we can write h = ¢;*' -~ g2 and a =
pi o pimgyt -+ g, with all r; and s; positive, and py, ..., pu, qi, ..., q, distinct
odd primes. This give the desired factorization with P chosen as in (i).

Now suppose that a is even; by Proposition 1, 1 = 2¢? with gcd(a, h) = 2q. So
we can write h = 220t g™ ... g2 and a = 27 pl' - prmgl - g If 59 = 0, then
we obtain a factorization of [a, h] with P, as in (ii). In this case, r > 2, since a factor
of [2, 2] would prevent [a, h] from being primitive. If 5o > 0, then since ged(a, h) =
2%0tlgit ... g5, we must have r = sy + 1 giving a factorization with Py as in (iii), with
r>2.

For the uniqueness of the factorization, we observe that the product of the first
entries must be a, and the only way that the second entries can have product equal to
h is for the factor of & that is a power of 2 to be paired with the factor 2" of a, and for

each of the qszi factors of & to be paired with one of the g, factors of a that appears in
a term of the form [g;,, qszi]. [

COROLLARY 2. Let [a, h] € D. Then [a, h] can be written uniquely in the form
So *[2°, 21 % ([T, [p, pi'1), where the p; are distinct odd primes, s,t > 0, each
si,t; > 0ands; +1t; >0, and S is one of the four GPTs [£1, £1]. In this form, each
t; < 2s;, and either s =t =0o0r1 <t < 2s.

Proof. Write [a, h] as [N, N] = [ay, h,], where N is a positive integer and [a;, /]
is primitive. Using the factorization for [a;, 4] given in Theorem 5, we obtain a factor-
ization for [a, h] of the desired form. It is unique, since the product of the first entries
of the factors is a and the product of the second entries is /. ]

Now, we can develop the precise structure of the monoid D. First, note that D is the
union of two nonintersecting semigroups: Dy, the set of [0, k], and D, the monoid
consisting of the [a, h] with a # 0. When a = 0, & must be even, so Dy is isomorphic
to the semigroup 27 — {0} under multiplication. The rule [0, &] * [a, h,] = [0, h1h,]
shows exactly how to multiply an element of D, by an element of D, so to under-
stand the multiplicative structure of D, it remains only to understand D_. Let A be the
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monoid consisting of the [a, ] with a and & both positive. Since each [a, h] in D, can
be written uniquely as [€;, €,] * [ay, hi], with [€], €;] € {[£]1, £1]} and [a, h;] € A,
Dy is the direct sum {[£1, 1]} @ A. So it remains only to understand A. In the
process, we will determine exactly which elements of D can be written as products of
primitive GPTs.

Begin with an [a, ] in A. By Corollary 2, [a, h] can be factored uniquely as
[T, [pi". pi'], where the p; are distinct primes and the exponents are all nonnega-
tive, and for each i, s; + 1 > O and ; < 2s;, and moreover if p; = 2then 1 < ; < 2s;.
So we can write A as the direct sum P ,.p A,, where P is the set of primes and

1. For p an odd prime, A, is the set of GPTs of the form [p*, p'] with s, ¢ > 0 and
t <2s.

2. A, is the set of GPTs of the form [2°, 2], where s, > 0 and either s = ¢ = 0 or
1<t <2s.

We will see that the A, with p odd are rather easy to describe and are all essentially
the same, while A, is quite a bit more complicated.

We first analyze the A, for an odd p. Since r < 2s, any element [p*, p'] of A, can
be written as [p, pl* * [p, 11" * [p, p?]*, with u, v, and w nonnegative and at least
one of them positive. We identify [p*, p’] with the vector (s, 1), so that the opera-
tion becomes vector addition. This identifies A, with the submonoid M of Z-( x Z>
generated by the vectors (1, 1), (1,0), and (1, 2). The latter two vectors generate a
submonoid that we call 3,,; for each (s, 1) € B,  is even.

The first coordinate system in FIGURE 5 shows a picture of A,,, with the solid dots
indicating the elements of 3,. One sees, either by calculation or by noticing that in
FIGURE 5, adding the vector (1, 1) moves the solid dots to the open circles, that every
element of .4, can be written uniquely as [p, 11" * [p, p*1Y * [p, pl¢ with € equal to
0 or 1, and an element lies in B, if and only if € = 0, that is, when it has the form
[p*, p'] with r even. Thus B, consists exactly of the elements of A, that are products
of PPTs.

O e O e

O e O e O e

O e O e O e O e
O @€ O @€ O e O e O e

N

Figure 5 A, and B, for p an odd prime

Algebraically, A, is generated as a semigroup by three generators y; = [p, 1],
v» = [p, p*], and y3 = [p, p], subject to the relation that y; * y» = y3 * 3, and B,
is the submonoid generated by y; and y,. In fact, B, is isomorphic to Z- X Z=,. An
explicit isomorphism is given by multiplication by the matrix

1 —1/2
0 1/2
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(as usual, we regard (s, t) as a column vector and multiply on the left by this matrix).
The second coordinate system of FIGURE 5 shows the result of multiplying the vectors
of A, by this matrix. This carries B, to Z-o X Zxg, and A, — BB, to the vectors of the
form (1/2,1/2) + (s, t) for (s, 1) € B,,.

Now we analyze A,. By Corollary 2, A, consists of [1, 1] and the [2°, 2] with
1 <t < 2s. Again changing to vector notation, we identify A, with the submonoid
M, of Z=o x Zs consisting of (0, 0) and all (s, #) with 1 <t < 2s. There is no finite
generating set for .A,. For the angles of inclination of the nonzero vectors in the span
of any finite subset of M, are bounded away from 0, but 0 is a limit point for the set of
angles of inclination of elements of M,.

Define the submonoid B, of A, to consist of the products of primitive GPTs.
Let S ={(s,1) | s >2} and S; = {(5,25 — 1) | s > 2}. Theorem 5 shows that
S, ={(0,0)} US, US; is the collection of all primitive GPTs in Aj, so BB, is the
submonoid generated by ;. In a previous version of this article, we gave a proof that
B, contains all but finitely many elements of .A,. We thank the referee for improve-
ments that give the following sharper result.

THEOREM 6. The set A, — B3, consists of (1, 1), (2,2), (3,2), (3,3), (3,4), (4, 3),

4,5), (5,3), (5,5), and (5,7)}, these are exactly the PTs 2"(1,0, 1) forn =1, 2, 3,
and 5, 2(4, £3,5), 4(4, £3, 5), and 4(8, =15, 17).

Proof. In our proof, all variables will represent positive integers. First, consider the
region L in FIGURE 6, which consists of all nonzero (s, t) € A, having 1 <1 < s5/2.
We claim that L C B,, as we will show by induction on 7. If t = 1, then (s, 7) € S5 . If
t > 1,then (s, 1) = (2,1)+ (s —2,¢t — 1), with (s — 2, — 1) € L. By the induction
hypothesis, (s — 2,1 — 1) € By, so (s, 1) € B,.

A~ N2

'S t t t t t t t t t 'S

Figure 6 Finding A, — B,

Next, we claim that U C BB,, where, as shown in FIGURE 6, U is the set of (s, 1)
satisfying 3 < 3s/2 <t < 2s. Let M be the matrix

)

© THE MATHEMATICAL ASSOCIATION OF AMERICA



VOL. 78, NO. 1, FEBRUARY 2005 41

Notice that M = M~', and M carries integer lattice points to integer lattice points.
As usual, thinking of vectors as column vectors when necessary, we have M (s, 1) =
(s,2s — 1), so M interchanges the sets S; and S{ . Also, M interchanges the s-axis
with the line r = 2s and interchanges the line t = /2 with the line t = 35/2. That is,
M interchanges the sets U and L. Since multiplication by M is a homomorphism with
respect to vector addition, and every element of L is a sum of elements of S, this
shows that every element of U is a sum of elements of S, , so U C B,.
We note that

1. Fors >4, (s,4) = (s —2,1)+ (2,3) € B..
2. Fors >6,(s,5) =(s—-2,4)+(2,1) € B..
3. Fors >5,(5s,6) =3,5 + (s —3,1) € B,.

Now, write (s, t) + U to mean the set of all points of the form (s, t) + (u, v) with
(u, v) € U. The second graph in FIGURE 6 shows the sets (2, 1) + U, (3, 1) + U, and
(4, 1) + U, and makes it clear that the union of all (n, 1) + U for n > 2 contains all
(s,t) withs > 6 and r > 7. Since each (1, 1) + U C B,, all of these points are in 5,.

Combining the observations made so far shows that all the solid dots in the first
graph in FIGURE 6 are in B3,, leaving only the points listed in the statement of the
theorem, shown as hollow dots, as candidates for the points of A, — 5.

To check that these ten points are not in B,, we induct on s. Each element of S,
other than (0, 0) has s-coordinate at least 2, so (1, 1) is not in 3,. Since (2, 2) is not
one of the primitives (2, 1) or (2, 3), it is not in B,. To be in B,, each of (3, 2), (3, 3)
and (3, 4) would have to be (2, 1) + (1, ¢) or (2, 3) + (1, t), which is impossible since
no (1, t) is primitive. Each of (4, 3) and (4, 5) would have to be either (2, 1) 4+ (2, ) or
2,3)+ (2,1), fort = 1 or t = 3, again giving no posssibilites. Finally, (5, 3), (5, 5),
or (5,7) would have tobe (2, 1) + (3,¢t) or (2,3) + (3,1),fort = 1 ort = 5. [ |

As was the case for A4, multiplication by the matrix

1 —1/2
0 1/2

clarifies the picture. FIGURE 7 shows the result of multiplying the vectors of A,
by this matrix. The nonzero primitives are carried to the points (n + 1/2, 1/2) and
1/2,n+1/2) forn > 1.

| | | |
T T T T s

Figure 7 A better view of A, and B

We still need to identify which elements of D, are products of primitives. We denote
this subsemigroup by B,. For any product of elements of D that lies in Dy, one of the

© THE MATHEMATICAL ASSOCIATION OF AMERICA



42 MATHEMATICS MAGAZINE

factors must have @ = 0. The only primitives in Dy are [0, £2], so the only products
of primitive elements from D, are the [0, £2"] with n > 1. The h-coordinates of the
other primitive factors, up to sign, all have the form ¢ with ¢ odd, or 2¢* with g # 0.
So the h-coordinate of the product must have the form +Q? with Q even, or 2072,
and any number of this form can be achieved.

Summarizing, we have the complete monoid structure.

THEOREM 7. The Beauregard-Suryanarayan monoid D is a disjoint union Dy U
Do, where Dy consists of all [0, h] with h even, and is isomorphic to 27, — {0}. There
is a direct sum decomposition

Do = {[il,il]}@Az@< D Ap>,

peP—{2}

with each A, isomorphic to the 3-generator monoid M, and A, isomorphic to the
non-finitely-generated monoid M,. The submonoid of products of primitive GPTs is a
disjoint union By U B, where By consists of all [0, h] with h of the form £q* with q
even, or £2q°, and

B#):{[il,j:l]}@Bg@( &y B,,),

peP—{2}

where each B, consists of the [p®, p'] in A, with t even, and B, consists of all but the
ten elements of A, specified in Theorem 6.

The e-operation

In this final section, we adapt our approach to the Beauregard-Suryanarayan operation
to develop a new operation on GPTs (with & # 0), which is multiplicative with respect
to e and to h. We will see that as with the Beauregard-Suryanarayan operation, the
group obtained by projectivization can be naturally identified with {1, —1} x @, but
this time the subgroup corresponding to {1} x Q. is exactly the set of PPTs.

Since e = kd, Theorem 1 shows that e-i coordinates on the set D of GPTs with
h # 0 can be defined by putting

62 62
(e,h):<h+e,e+ﬁ,h+e+ﬂ>.

Theorem 1 and Lemma 1 show that (e, i) represents a GPT exactly when £ and e are
integers such that & # 0 and 2h divides €2, and (e, h) is a PT exactly when both e and
h are positive. Some examples are:

. <2’ 1) = (37 4’ 5)9 <27 2) = (41 37 5)’ <2’ _2> = (07 17 _1)

L 2p, 1y =1 +2p,2p+2p% 14+2p +2p?).

. (2p.2) = (Q2+2p.2p+p* 24+ 2p + pA.

- (29.4%) = (¢° +29,29 +2,4° +29 +2).

25,28y = (25 #2271 425 1 425 + 2% ) with s > 1.

D W N =

The relation between e-h coordinates and a-h coordinates is just that (e, h) =
[e + h, h], so the condition to identify primitive GPTs is exactly that of Proposition 1:
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PROPOSITION 2. For h # 0, (e, h) is primitive exactly when either
1. h = £q? with q odd and gcd(e, h) = q, or
2. h = £2¢?% and ged(e, h) = 2q.
We define an operation by the simple rule
(e1, 1) (€2, ha) = (erea, hih2)

and call it the e-operation. Notice that (e e,, h h,) does represent a GPT, since if
2h; | €} and 2h, | €3, then 2k h, | (e1e2)?. In (a, b, ¢)-coordinates (obviously the
wrong ones for viewing it), the operation takes the form
(ay, by, c1)(az, by, ) =
(a1a2 + a1b2 —ajcy + bl(lz + 2b1b2 — 2b1C2 — Ci1dy — chbz + 26’1C2,
3611(12 + Cllbz - 3(1162 + blaz + b1b2 - b1C2 - 3C1(12 - Clbz + 3C1C2,
3611(12 + Cl]bz — 361162 + b1a2 + 2b1b2 — 2b1C2 — 3(,’]612 — 2C1b2 +4Cl(32),

and in a-h coordinates it is [ay, hy][az, hy] = [aja, — ayhy — ayhy + 2hhy, hhs].
Here are a couple of sample calculations.

1) (2, 1)
1) = (5,12, 13)

(2,
= (4,
4,3,5 @@,b,c)=2,2)(a+b—c,c—D>)
= (2(a+b—c),2(c — b)) = (2a, 2b, 2c)

(3,4,5) 3,4,5) =

For (e, h) = (a, b, ¢) and any nonzero integer n, we have n(e, h) = (na, nb, nc) =
(ne, nh), and we will declare all these equivalent. Denote the set of equivalence classes
with i £ 0 by &.

THEOREM 8. Define ¢:E — {1, —1} x Q by sending (e, h) to (o (h), e/ h), where
o (h) = L if h is positive and is —1 if h is negative. Then ¢ is an isomorphism.

Proof. As in Theorem 4, it is straightforward to check that ¢ is a well-defined ho-
momorphism. It is surjective, since ¢ (+(2, 2)) = (£1, 1), ¢ (£(2, —2)) = (1, —1),
#({0,1)) = (1,0), ((2,1)) = (1,2), ¢((4,8)) = (1, 1/2), and ¢ ({4, 8)(2¢, 1)) =
(1, g) and ¢ ({4, 8)(2¢, ¢*)) = (1, 1/q), when g is an odd prime. For injectivity, sup-
pose that ¢ ({(e1, 1)) = ¢ ({e2, h2)). Then h, and h, have the same sign, so replacing
each (e;, h;) by (—e;, —h;) if necessary, we may assume that both /4, and &, are posi-

tive. Since
1( hy = 1+e e+1(e>2 1_{_e_l_l<e>2
p o= wn 2\ T2\ )

we have h, (ey, hi) = hy (ez, hy). Thus (ey, h;) and (e,, h,) are projectively equivalent
and represent the same element of £. ]

Under this isomorphism, the PPTs correspond exactly to Q., so they form an
abelian group free on the generators {(2, 1)} U {(2p, 2) | p is prime}. It is also free
on the set of height-1 PPTs {(2, 1)} U {(2p, 1) | p is prime}.

Unlike the Beauregard-Suryanarayan operation, the e-operation is not well-behaved
at the level of PTs. For example, it has no identity element, and appears to have poor
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factorization properties, since no GPT (e, h) with e =2 mod 4 can be factored into a
product of two GPTs. But perhaps there is still some nice structure hiding there.
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A Note from the Problems Editor

John Cobb and Martin Tangora each noted that there is an even quicker solution
to Quickie 943 (October 2004). Because the metric space (X, d) is compact,
d(x, y) assumes its maximum on X x X. Thus d(f(x), f(y)) > d(x, y) cannot
be true for every pair (x, y) with x # y. Hence X must consist of a single point.
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