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Exam III

November 14, 2011

Name (please print)

Instructions: Give concise answers, but clearly indicate your reasoning.

I.
(5)

Find all critical points of the function ey(y2 − x2).

We have
∂

∂x
ey(y2 − x2) = −2xey and

∂

∂y
ey(y2 − x2) = ey(y2 − x2) + 2eyy = ey(y2 + 2y − x2). The

first is zero only when x = 0. When x = 0, the second is zero only when y2 + 2y = 0, that is, when
y = 0 or y = −2. So the critical points are (0, 0) and (0,−2).

II.
(4)

Here is a minimization problem: “Find three numbers whose sum is 18 and so that the sum of the square
of the first, plus twice the square of the second, plus three times the square of the third, is as small as
possible.” Set up the minimization problem as a problem of minimizing a function of two variables, but
do not proceed further with the problem.

Call two of the numbers x and y, so the third is 18− x− y. The function described in the problem is
f(x, y) = x2 + 2y2 + 3(18 − x − y)2.

III.
(6)

Find the maximum and minimum values of the function f(x, y) = x2+y on the unit circle, by parameterizing
the boundary and expressing f as a function of the parameter, then finding the maximum and minimum
values of that function.

We parameterize the unit circle as x = cos(θ), y = sin(θ), so on the unit circle the function is
g(θ) = f(cos(θ), sin(θ)) = cos2(θ) + sin(θ).

Seeking critical points, we have g′(θ) = −2 cos(θ) sin(θ) + cos(θ) = cos(θ)(1 − 2 sin(θ)). This is zero
when cos(θ) = 0, which occurs at θ = π/2 and θ = 3π/2, or when sin(θ) = 1/2, which occurs at
θ = π/6 and θ = 5π/6.

The corresponding four points on the circle are (0, 1), (0,−1), (
√

3/2, 1/2) and (−
√

3/2, 1/2).

Since f(0, 1) = 1, f(0,−1) = −1, f(
√

3/2, 1/2) = 5/4 and f(−
√

3/2, 1/2) = 5/4, the maximimu is
5/4 at (

√
3/2, 1/2) and (−

√
3/2, 1/2), and the minimum is −1 at (0,−1).

IV.
(6)

For the integral

∫ 0

−3

∫

√
9−y2

−
√

9−y2

x3 + xy2 dx dy :

(a) Rewrite the integral to reverse the order of integration and supply the limits of integration, but do not
continue further with its evaluation.

The domain of integration is the portion of the disk of radius 3 at the origin that lies below the x-axis.

Since the bottom circle has equation y = −
√

9 − x2, the rewritten integral is

∫ 3

−3

∫ 0

−
√

9−x2

x3+xy2 dy dx.

(b) Rewrite the integral using polar coordinates and supply the limits of integration, but do not continue further
with its evaluation.

In polar coordinates the region is 0 ≤ r ≤ 3, π ≤ θ ≤ 2π. The integrand becomes x(x2+y2) = r cos(θ)r2,

and dy dx becomes r dr dθ, so the rewritten integral is

∫ 2π

π

∫ 3

0
r4 cos(θ) dr dθ.

V.
(6)

Consider a lamina occupying the region D in the xy-plane which is a triangle with vertices (0, 0), (1, 2),
and (2, 0). Suppose that its density at the point (x, y) is x + y. Write expressions involving integrals for
each of the following. Supply limits of integration for the integrals, but do not evaluate them.
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(a) The mass of the lamina.

The mass is

∫∫

D
x + y dA. The bottom side of D is y = 0, the upper left side is y = 2x, and the upper

right side is y = 4−2x. It looks easier to integrate with respect to x first, using the expressions x = y/2

and x = 2 − y/2, so the integral can be written as

∫ 2

0

∫ 2−y/2

y/2
x + y dx dy.

Integrating with respect to y first is acceptable, giving the more complicated expression
∫ 1

0

∫ 2x

0
x + y dy dx +

∫ 2

1

∫ 4−2x

0
x + y dy dx.

(b) The x-coordinate of its center of mass.

The distance from the y-axis is x, so we have

x =
My

m
=

∫ 2

0

∫ 2−y/2

y/2
x2 + xy dx dy

∫ 2

0

∫ 2−y/2

y/2
x + y dx dy

or, integrating with respect to y first,
∫ 1

0

∫ 2x

0
x2 + xy dy dx +

∫ 2

1

∫ 4−2x

0
x2 + xy dy dx

∫ 1

0

∫ 2x

0
x + y dy dx +

∫ 2

1

∫ 4−2x

0
x + y dy dx

VI.
(8)

Recall that if a surface S is the graph of a function f , that is, when it is the graph of the equation
z = f(x, y), then the local relation between surface area on S and surface area dR = dx dy in the xy-plane

below it is that dS =
√

1 + f2
x + f2

y dR. Let S be the portion of the sphere x2 + y2 + z2 = 3 that lies inside

the region above the cone z =
√

x2 + y2.

(a) Compute
√

1 + f2
x + f2

y for the function f(x, y) =
√

3 − x2 − y2.

√

1 + f2
x + f2

y =

√

√

√

√1 +

(

−x
√

3 − x2 − y2

)2

+

(

−y
√

3 − x2 − y2

)2

=

√

1 +
x2

3 − x2 − y2
+

y2

3 − x2 − y2
=

√

3

3 − x2 − y2
=

√
3

√

3 − x2 − y2

(b) Find the region R in the xy-plane that lies below the surface S.

The top half of the sphere is z =
√

3 − x2 − y2. The intersection of the sphere with the cone is where
√

3 − x2 − y2 =
√

x2 + y2, that is, where x2 + y2 = 3/2, the circle of radius
√

3/2, and R is the disk
bounded by this circle.

(c) Write an integral whose value is the area of S. Express the integral in polar coordinates and supply the
limits of integration, but do not evaluate the integral.

∫∫

R

√
3

√

3 − x2 − y2
dR =

∫ 2π

0

∫

√
3/2

0

√
3r

√
3 − r2

dr dθ .
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VII.
(4)

Sketch the solid whose volume is given by the integral

∫ 1

0

∫ 2−2x

0

∫ 1

x+ y

2

dz dy dx. It might help to notice

that z = x + y
2 is a plane that passes through (0, 2, 1) and (1, 0, 1).

z

x

1

1

2
y

y

z

dS

x

a

a

VIII.
(7)

When we specialize spherical coordinates to the
points on a sphere of radius a, we obtain a pa-
rameterization of the sphere in terms of θ and
φ, given by the formulas x = a sin(φ) cos(θ),
y = a sin(φ) sin(θ), z = a cos(φ). There is also
the useful formula r = a sin(φ).

(a) Draw the region in the θφ-plane that corresponds
to the entire surface of the sphere. Show which
lines correspond to latitudes on the sphere, and
which lines corrspond to longitudes on the sphere.

It is the rectangle 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π.
The horizontal lines correspond to latitudes,
and the vertical lines correspond to longi-
tudes.

(b) In the figure to the right, label dθ and dφ. Label
various distances and use them to figure out an
expression for dS in terms of dθ and dφ.

θd

dφ
y

z

dS a dφ
θr d 

x
a

a

r

a

Since r = a sin(φ), we have dS = r dθ a dφ = a sin(φ) dθ a dφ = a2 sin(φ) dθ dφ.
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IX.
(4)

Sketch the solid whose volume is given by the integral

∫ π

π/2

∫ 2π

0

∫ 2

1
ρ2 sin(φ) dρ dθ dφ .

y2

z

x

1

X.
(10)

Consider the transformation x = es−t, y = es+t from the st-plane to the region x > 0, y > 0 in the
xy-plane.

(a) Calculate the Jacobian of this parameterization.

∣

∣

∣

xs ys
xt yt

∣

∣

∣
=

∣

∣

∣

∣

es−t es+t

−es−t es+t

∣

∣

∣

∣

= es−tes+t + es+tes−t = 2e2s .

(b) Find the (s, t)-values where the transformation increases area locally.

It increases area locally at the points where 2e2s > 1. Solving this, we obtain

e2s > 1/2

2s > ln(1/2) = − ln(2)

s > − ln(2)/2

(c) Let R be the region in the xy-plane bounded by xy = 1, xy = 3, y = x, and y = 3x, as in the problem that
we analyzed in class. Take as given the fact that R corresponds to the square S in the st-plane given by

0 ≤ s ≤ ln(3)/2 and 0 ≤ t ≤ ln(3)/2, write an integral in terms of s and t which equals

∫∫

R
xy dA. Supply

the limits of integration, but do not evaluate the integral (the evaluation is not hard, it gives the answer
2 ln(3) which agrees with the two methods we used for this problem in class).

∫∫

R
xy dA =

∫∫

S
es−tes+t · 2e2s dS =

∫ ln(3)/2

0

∫ ln(3)/2

0
2e4s ds dt


