Exam II

October 17, 2011

Instructions: Give concise answers, but clearly indicate your reasoning. It is *not* expected that you will be able to answer all the questions, just do whatever you can in 50 minutes.

I. Evaluate the following integrals.

(12)
1.
$$\int \frac{\cos(\pi/x)}{x^2} dx$$
2.
$$\int \frac{x+1}{x^2+1} dx$$
3.
$$\int \frac{x^2}{\sqrt{1-x}} dx$$

II. If f(x) is the slope of a trail at a distance x miles from the start of the trail, what does the integral (3) $\int_{3}^{5} f(x) dx$ represent?

III. By substituting
$$u = \frac{t}{a}$$
, verify that $\int_{a}^{ab} \frac{1}{t} dt = \ln(b)$.

IV. Write definite integrals to compute each of the following, but *do not* simplify or evaluate them.

- (8) (a) The volume of the solid produced when the region bounded by $y = (x-2)^2$ and y = 8x - 16 is rotated about the line y = -1.
- (b) The volume of the solid produced when the region in part (a) is rotated about the line x = -1.

V. (a) Calculate and simplify:
$$\frac{d}{dx} \ln(x + \sqrt{x^2 - 1})$$
 (11)

(b) Simplify and calculate:
$$\frac{d}{dz} \ln \left(\sqrt{\frac{a^2 - z^2}{a^2 + z^2}} \right)$$

(c) Calculate the average value of $\frac{1}{1+x^2}$ between x = 0 and $x = \sqrt{3}$.

VI. Potpourri:

(13)

- 1. Define what it means to say that a function f is *injective*.
- 2. For an injective function f with domain A and range B, define the *inverse function* g.
- 3. State the Intermediate Value Theorem.
- 4. Show that for any integer $n \ge 2$, $\ln(n) < 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n-1}$.
- 5. Draw a right triangle with hypotenuse of length 1 and a side of length x. Indicate the length of the third side and correctly label the interior angles as $\sin^{-1}(x)$ and $\cos^{-1}(x)$. Use the triangle to find $\cot(\sin^{-1}(x))$.