October 17, 2011
Instructions: Give concise answers, but clearly indicate your reasoning. It is not expected that you will be able to answer all the questions, just do whatever you can in 50 minutes.
I. Evaluate the following integrals.
(12)

1. $\int \frac{\cos (\pi / x)}{x^{2}} d x$
2. $\int \frac{x+1}{x^{2}+1} d x$
3. $\int \frac{x^{2}}{\sqrt{1-x}} d x$
II. If $f(x)$ is the slope of a trail at a distance x miles from the start of the trail, what does the integral (3) $\quad \int_{3}^{5} f(x) d x$ represent?
III. By substituting $u=\frac{t}{a}$, verify that $\int_{a}^{a b} \frac{1}{t} d t=\ln (b)$.
IV. Write definite integrals to compute each of the following, but do not simplify or evaluate them.
(a) The volume of the solid produced when the region bounded by $y=(x-2)^{2}$ and $y=8 x-16$ is rotated about the line $y=-1$.
(b) The volume of the solid produced when the region in part (a) is rotated about the line $x=-1$.
V. (a) Calculate and simplify: $\frac{d}{d x} \ln \left(x+\sqrt{x^{2}-1}\right)$
(11)
(b) Simplify and calculate: $\frac{d}{d z} \ln \left(\sqrt{\frac{a^{2}-z^{2}}{a^{2}+z^{2}}}\right)$
(c) Calculate the average value of $\frac{1}{1+x^{2}}$ between $x=0$ and $x=\sqrt{3}$.
VI. Potpourri:
(13)
4. Define what it means to say that a function f is injective.
5. For an injective function f with domain A and range B, define the inverse function g.
6. State the Intermediate Value Theorem.
7. Show that for any integer $n \geq 2, \ln (n)<1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n-1}$.
8. Draw a right triangle with hypotenuse of length 1 and a side of length x. Indicate the length of the third side and correctly label the interior angles as $\sin ^{-1}(x)$ and $\cos ^{-1}(x)$. Use the triangle to find $\cot \left(\sin ^{-1}(x)\right)$.
