Mathematics 1823-030
Examination III Form B
November 23, 2009

Name (please print)
Student Number
(1) Discussion Section (circle day and time):

Th 9:00 Th 1:30 Th 3:00 F 8:30 F 9:30 $\quad$ F 2:30
I. (a) Find the differential of $\sqrt{x}$.

$$
\begin{equation*}
d(\sqrt{x})=\frac{d}{d x}(\sqrt{x}) d x=\frac{1}{2 \sqrt{x}} d x \tag{7}
\end{equation*}
$$

(b) Use linear approximation to estimate $\sqrt{3.996}$.

Using $f(a+\Delta x) \approx f(a)+f^{\prime}(a) \Delta x$ with $f(x)=\sqrt{x}, a=4$, and $\Delta x=-0.004$, we have

$$
\sqrt{3.996} \approx \sqrt{4}+\frac{1}{2 \sqrt{4}}(-0.002)=2+\frac{1}{4}(-0.004)=1.999
$$

(Alternatively, one can use $f(x+d x) \approx f(x)+d y$ with $f(x)=\sqrt{x}, x=4$, and $d x=-0.004$, so that $d y=\frac{1}{4} d x$, to achieve the same estimate.)
II. A boat is pulled into a dock by a rope attached to the bow of the boat and passing through a pulley on
(8) the dock that is 2 m higher than the bow of the boat. The rope is pulled at a rate of $2 \mathrm{~m} / \mathrm{sec}$.
(a) Draw and label a figure that illustrates this situation.

(b) How fast is the boat approaching the dock when it is 12 m from the dock?

$$
\begin{gathered}
x^{2}=s^{2}+4 \\
2 x \frac{d x}{d t}=2 s \frac{d s}{d t} \\
\frac{d s}{d t}=\frac{x}{s} \frac{d x}{d t}
\end{gathered}
$$

When $s=12, x^{2}=144+4=148$, so $x=\sqrt{148}$.

$$
\begin{gathered}
\frac{d x}{d t}=-2, \text { so } \\
\frac{d s}{d t}=\frac{\sqrt{148}}{12}(-2)=-\frac{\sqrt{148}}{6}
\end{gathered}
$$

The boat is approaching the dock at $\frac{\sqrt{148}}{6} \mathrm{~m} / \mathrm{sec}\left[\right.$ which equals $\frac{\sqrt{37}}{3} \mathrm{~m} / \mathrm{sec}$ ].
III. In this problem, $f(x)=\frac{2}{x}+\frac{1}{x^{2}}$, which can also be written as $\frac{2}{x^{2}}\left(x+\frac{1}{2}\right)$. The first and second derivatives of $f$ are $f^{\prime}(x)=-\frac{2}{x^{2}}-\frac{2}{x^{3}}$ and $f^{\prime \prime}(x)=\frac{4}{x^{3}}+\frac{6}{x^{4}}$ (do not check these)

1. Find the root or roots of $f$.

$$
x=-\frac{1}{2}
$$

2. Find $\lim _{x \rightarrow \infty} f(x)$.

$$
\lim _{x \rightarrow \infty} \frac{2}{x}+\frac{1}{x^{2}}=0+0=0
$$

3. Find $\lim _{x \rightarrow 0^{+}} f(x)$ and $\lim _{x \rightarrow 0^{-}} f(x)$.

We think of these as $\lim _{x \rightarrow 0^{+}} \frac{2}{x^{2}}\left(x+\frac{1}{2}\right)$ and $\lim _{x \rightarrow 0^{-}} \frac{2}{x^{2}}\left(x+\frac{1}{2}\right)$. For $x$ close to 0 and either positive or negative, $x+\frac{1}{2}$ is approximately $\frac{1}{2}$, while $\frac{2}{x^{2}}$ is large positive. So both limits are $+\infty$.
4. Find the critical number or critical numbers of $f$.
$f^{\prime}(x)=-\frac{2}{x^{2}}-\frac{2}{x^{3}}=-\frac{2}{x^{3}}(x+1)$, so $x=-1$ is the only critical number.
5. Find the inflection point or inflection points of $f$.

$$
f^{\prime \prime}(x)=\frac{4}{x^{3}}+\frac{6}{x^{4}}=\frac{4}{x^{4}}\left(x+\frac{3}{2}\right) \text { so } x=-\frac{3}{2} \text { is the only inflection point. }
$$

IV. State the Mean Value Theorem, including its hypotheses.

If $f:[a, b] \rightarrow \mathbb{R}$ is a function which is
(i) continuous on $[a, b]$, and
(ii) differentiable on $(a, b)$,
then there exists $c$ between $a$ and $b$ such that $f(b)-f(a)=f^{\prime}(c)(b-a)$.
V. (a) For the function $\sqrt{x}$ on the interval [0,9], find a number $c$ that satisfies the conclusion of the Mean
(8) Value Theorem.

We have $\frac{f(9)-f(0)}{9-0}=\frac{1}{3}$ and $f^{\prime}(x)=\frac{1}{2 \sqrt{x}}$, so we seek $c$ satisfying $f^{\prime}(c)=\frac{1}{3}$. This is $\frac{1}{2 \sqrt{c}}=\frac{1}{3}$, so $c=\frac{9}{4}$.
(b) Use the Mean Value Theorem to verify the following fact: Suppose that $f:[a, b] \rightarrow \mathbb{R}$ is continuous on $[a, b]$ and differentiable on $(a, b)$. If $f^{\prime}(x)<0$ for $a<x<b$, then $f(a)>f(b)$.

Applying the Mean Value Theorem, we have

$$
f(b)-f(a)=f^{\prime}(c)(b-a) .
$$

We have $b-a>0$, and $f^{\prime}(c)<0$ since $f^{\prime}(x)<0$ for all $x$ between $a$ and $b$. So $f^{\prime}(c)(b-a)<0$ and therefore $f(b)<f(a)$.
VI. A certain differentiable function $f$ has domain all nonzero real numbers, and has the following properties:
(8) a) $f(-2)=1, f(3)=4, f(5)=2$
(b) $f^{\prime}(-2)=0, f^{\prime}(3)=0$.
(c) $\lim _{x \rightarrow 0} f(x)=-\infty$.
(d) $f^{\prime \prime}(x)<0$ for $-2<x<0$ and for $0<x<5$.
(e) $f^{\prime \prime}(x)>0$ for $x<-2$ and $5<x$.
(f) $\lim _{x \rightarrow \infty} f(x)=1$.

Sketch a possible graph of $f$, using all of the above information.

VII. Let $f:[a, b] \rightarrow \mathbb{R}$ be a function which is continuous on $[a, b]$ and differentiable on $(a, b)$. Label each of the following statements either $T$ for true or $F$ for false.

T If $a$ and $b$ are roots of $f$, then there must exist a number $c$ between $a$ and $b$ for which $f^{\prime}(c)=0$. T If $f^{\prime}(x)<0$ for $a<x<b$, then $f(a)<f(b)$.

F The Mean Value Theorem is a special case of Rolle's Theorem.
T The Mean Value Theorem can be deduced from Rolle's Theorem.
T If $f(a)<f(b)$, then there must exist a number $c$ between $a$ and $b$ for which $f^{\prime}(c)>0$.
T or F If $f^{\prime \prime}(x)$ changes sign at $c$, then $c$ is an inflection point of $f$. [The answer depends on the precise $\overline{\text { definition of inflection point that one uses.] }}$
$\underline{\mathrm{T}}$ There must exist a number $c$ in the interval $[a, b]$ such that $f(c) \geq f(x)$ for all $x$ in $[a, b]$.
F If $f$ were not continuous on $[a, b]$, then it could still have an absolute maximum or absolute minimum value on $[a, b]$, but not both.

F If $c$ is an interior point of the interval and $f^{\prime}(c)=0$, then $f$ must have either a local maximum or a local minimum (or both) at $c$.

T If $f(x)$ equals the mass of the portion of a metal rod between 0 and $x$, then $f^{\prime}(x)$ is the density function of the rod.

