Mathematics 1823-030
Examination II Form B
October 19, 2009

Name (please print)

Student Number

(1) Discussion Section (circle day and time):

Th 9:00 Th 1:30 Th 3:00 F 8:30 \quad F 9:30 \quad F 2:30
I. Calculate each of the following. When calculating derivatives, use the algebraic rules, the Chain Rule, (25) and/or implicit differentiation (i. e. do not use the definition of the derivative as a limit). Do not perform simplifications to the answer unless instructed to do so.
(i) $\frac{d y}{d x}$ if $y=\frac{\cos \left(x^{2}\right)}{\cos ^{2}(x)}$

$$
\frac{d}{d x} \frac{\cos \left(x^{2}\right)}{\cos ^{2}(x)}=\frac{\cos ^{2}(x)\left(-\sin \left(x^{2}\right) 2 x\right)-\cos \left(x^{2}\right)(-2 \cos (x) \sin (x))}{\cos ^{4}(x)}=\frac{-2 x \cos (x) \sin \left(x^{2}\right)+2 \sin (x) \cos \left(x^{2}\right)}{\cos ^{3}(x)}
$$

(final simplification not necessary)
(ii) $\frac{d^{2} y}{d x^{2}}$ if $y=\tan (x)$

$$
\frac{d^{2}(\tan (x))}{d x^{2}}=\frac{d}{d x}\left(\sec ^{2}(x)\right)=2 \sec (x)(\sec (x) \tan (x))=2 \sec ^{2}(x) \tan (x)
$$

(iii) $\frac{d w}{d t}$ if $w=\sqrt{\frac{t+1}{t-1}}$. Simplify this answer.

$$
\frac{d}{d t} \sqrt{\frac{t+1}{t-1}}=\frac{1}{2 \sqrt{\frac{t+1}{t-1}}} \frac{(t-1) \cdot 1-1 \cdot(t+1)}{(t-1)^{2}}=\frac{-2}{2(t-1)^{2} \sqrt{\frac{t+1}{t-1}}}=\frac{-1}{(t-1)^{3 / 2} \sqrt{t+1}}
$$

(iv) An equation for the tangent line to the curve $y=\left(x^{2}-1\right)^{1,000}$ at the point $(\sqrt{2}, 1)$. You need not simplify the answer.
$\frac{d y}{d x}=1,000 \cdot\left(x^{2}-1\right)^{999} \cdot 2 x$, so the slope of the tangent line is $\left.\frac{d y}{d x}\right|_{x=\sqrt{2}}=1,000(1) \cdot 2 \sqrt{2}=2,000 \sqrt{2}$.
Therefore an equation for the tangent line is

$$
\begin{gathered}
y-1=2,000 \sqrt{2}(x-\sqrt{2}) \\
y=2,000 \sqrt{2} x-3,999
\end{gathered}
$$

(final simplification not necessary)
(v) $\frac{d y}{d x}$ if $x^{2} \sin (y)=y^{3}$

$$
\begin{gathered}
x^{2} \cos (y) \frac{d y}{d x}+2 x \sin (y)=3 y^{2} \frac{d y}{d x} \\
\left(x^{2} \cos (y)-3 y^{2}\right) \frac{d y}{d x}=-2 x \sin (y) \\
\frac{d y}{d x}=\frac{-2 x \sin (y)}{x^{2} \cos (y)-3 y^{2}}
\end{gathered}
$$

II. The figure to the right shows the graph of a certain func(6) tion $f:[-2,4] \rightarrow \mathbb{R}$. On the coordinate system shown below, sketch a graph of the derivative $f^{\prime}(x)$. The values of $f^{\prime}(x)$ need not be precise, but should accurately reflect the behavior of $f(x)$. Indicate clearly any points where $f^{\prime}(x)$ is underfined.

III. Find the limit $\lim _{\theta \rightarrow 0} \frac{\sin (7 \theta)}{\sin (5 \theta)}$ (not by plotting points or by using l'Hôpital's rule).

$$
\lim _{\theta \rightarrow 0} \frac{\sin (7 \theta)}{\sin (5 \theta)}=\lim _{\theta \rightarrow 0} \frac{\frac{\sin (7 \theta)}{7 \theta} 7 \theta}{\frac{\sin (5 \theta)}{5 \theta} 5 \theta}=\lim _{\theta \rightarrow 0} \frac{\frac{\sin (7 \theta)}{7 \theta}}{\frac{\sin (5 \theta)}{5 \theta}} \frac{7}{5} \frac{\theta}{\theta}=\frac{1}{1} \frac{7}{5} 1=\frac{7}{5}
$$

IV. State the precise, formal (i. e. using ϵ and δ) definition of: $\lim _{x \rightarrow 3 \pi / 4} \sec (x)=-\sqrt{2}$.

For every $\epsilon>0$, there exists $\delta>0$ such that if $0<|x-3 \pi / 4|<\delta$, then $|\sec (x)+\sqrt{2}|<\epsilon$.
V. Define what it means to say that a function f is continuous at x_{0}. State the Intermediate Value Theorem. (5)
f is continuous at x_{0} when f is defined at $x_{0}, \lim _{x \rightarrow x_{0}} f(x)$ exists, and $\lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right)$.
The Intermediate Value Theorem says that if f is a continous function on the closed interval $[a, b]$, and N is any number between $f(a)$ and $f(b)$, then there exists a c between a and b such that $f(c)=N$.
VI. Let f be a function which is differentiable at $x=a$. Label each of the following statements either T for (6) true or F for false.

T The limit $\lim _{w \rightarrow a} \frac{f(w)-f(a)}{w-a}$ must exist.

T f must be continuous at $x=a$.
$\underline{\mathrm{F}} f$ must be differentiable on any open interval that contains a.
$\underline{\mathrm{F}} f^{\prime}(a)$ might be ∞ or $-\infty$.
VII. In the blank to the left of each of the following two questions, write the letter of the best response.
(4)

1. C What type of mathematical object is $\frac{d^{2} y}{d x^{2}}$?
A) set
B) equation
C) function
D) codomain
E) theorem
F) number
2. D The pair (4!, 0!) equals
A) $(4,1)$
B) $(12,1)$
C) $(20,1)$
D) $(24,1)$
E) $(32,1)$
F) $(120,1)$
G) $(4,0)$
H) $(12,0)$
I) $(20,0)$
J) $(24,0)$
K) $(32,0)$
L) $(120,0)$
VIII. The table to the right shows the values of the functions f, g, f^{\prime}, and g^{\prime} at the x-values $1,2,3$, and 4. For example, $f(4)=4$ and $f^{\prime}(4)=1$. Write the value of each of the following:

x	$f(x)$	$f^{\prime}(x)$	$g(x)$	$g^{\prime}(x)$
1	2	3	1	4
2	2	4	1	2
3	1	2	4	2
4	4	1	4	2

$$
(g \cdot f)^{\prime}(3)=\underline{10} \quad(g \circ f)^{\prime}(1)=\underline{6} \quad(f / g)^{\prime}(4)=-\frac{1}{4} \quad(f \circ f)(3)=\frac{2}{2}
$$

